chok-chok-shop.ru

Основные среды передачи данных. Среды передачи данных

4.1.Основные типы кабельных и беспроводных сред передачи данных

На сегодня большая часть компьютерных сетей используют для соединения провода и кабели. Они выступают в качестве среды передачи сигналов между компьютерами. Наиболее распространены: коаксиальный кабель, витая пара, оптоволоконный кабель. Однако постепенно в нашу жизнь входит беспроводная среда передачи данных. Термин "беспроводная среда" может ввести в заблуждение, т. к. предполагает полное отсутствие проводов. В действительности это не так. Обычно беспроводные компоненты взаимодействуют с сетью, где основная среда передачи данных - кабель. В ЛВС они оказываются наиболее полезными: -в помещениях, заполненных людьми (приемная и т. п.); -для людей, которые не работают на одном месте (врач, брокер и т. п.); -в изолированных помещениях и зданиях (склад, гараж и т. п.); -в строениях (памятниках архитектуры или истории), где прокладка дополнительных кабельных трасс недопустима. Для беспроводной передачи данных используют: инфракрасное и лазерное излучение, радиопередачу и телефонию. Эти способы передачи данных в компьютерных сетях, как локальных, так и глобальных, привлекательны тем, что: -гарантируют определенный уровень мобильности; -позволяют снять ограничение на длину сети, а использование радиоволн и спутниковой связи делают доступ к сети фактически неограниченным.

4.1.1.Коаксиальный кабель

До недавнего времени самой распространенной средой передачи данных был коаксиальный кабель: относительно недорогой, легкий и гибкий, безопасный и простой в установке. На рис. 4.1 приведена конструкция коаксиального кабеля.

Рис.4.1.Конструкция коаксиального кабеля.

Электрические сигналы, кодирующие данные, передаются по жиле. Она изоляцией отделяется от металлической оплетки, которая играет роль заземления и защищает передаваемые по жиле сигналы от: -внешних электромагнитных шумов (атмосферных, промышленных); -перекрестных помех - электрических наводок, вызванных сигналами в соседних проводах. Используют толстый и тонкий коаксиальный кабель. Их характеристики представлены в таблице 4.1. Таблица 4.1

Характеристики коаксиального кабеля.

В обозначении кабелей по стандарту IEEE 802.3 первые две цифры - скорость передачи в Мбит/с, base обозначает, что кабель используется в сетях с узкополосной передачей (baseband network), последняя цифра - эффективная длина сегмента в сотнях метров, при которой уровень затухания сигнала остается в допустимых пределах. Тонкий подключается к сетевым платам непосредственно через Т-коннектор (рис. 4.2), толстый - через специальное устройство - трансивер (рис. 4.3).


Различают обычные и пленумные коаксиальные кабели. Последние обладают повышенными механическими и противопожарными характеристиками и допускают прокладку под полом, между фальшпотолком и перекрытием. При выборе для ЛВС данного типа кабеля следует принимать во внимание, что: 1)это среда для передачи речи, видео и двоичных данных; 2)позволяет передавать данные на большие расстояния; 3)это хорошо знакомая технология, предлагающая достаточный уровень защиты данных.

4.1.2.Витая пара

Если для передачи электрических сигналов воспользоваться обычной парой параллельных проводов для передачи знакопеременного списка большой частоты, то возникающие вокруг одного из них магнитные потоки будут вызывать помехи в другом (рис. 4.4). Для исключения этого явления провода перекручивают между собой (рис. 4.5).


Самая простая витая пара (twisted pair) - это два перевитых друг вокруг друга изолированных провода. Существует два вида такого кабеля: -неэкранированная витая пара (UTP); -экранированная витая пара (STP). Часто несколько витых пар помещают в одну защитную оболочку (типа телефонного кабеля). Наиболее распространена в ЛВС неэкранированная витая пара стандарта 10 baseT с эффективной длиной сегмента - 100 м. Определено 5 категорий на основе UTP (таблица 4.2). Таблица 4.2

Категории кабальных соединений на неэкранированной витой паре

4.1.3.Компоненты кабельной системы

При построении развитой кабельной системы ЛВС и для упрощения работы с ней используются следующие компоненты: ·Концентраторы. Для подключения витой пары к компьютеру используется телефонный коннектор RJ-45, который отличается от используемых в современных телефонах и факсах RJ-11 тем, что имеет 8 контактов вместо 4. ·Распределительные стойки и полки, которые позволяют организовать множество соединений и занимают мало места. ·Коммутационные панели. Существуют разные панели расширения. Они поддерживают до 96 портов и скорость передачи до 100 Мбит/с. ·Соединители. Одинарные или двойные витки RJ-45 для подключения к панели расширения или настенным розеткам. Обеспечивают скорость до 100 Мбит/с. ·Настенные розетки к которым можно подключить два или более соединителя. Достоинством использования компонентов кабельной системы ЛВС является то, что на их основе можно компоновать сети различной топологии. Один из вариантов использования компонентов кабельной системы ЛВС может иметь вид, аналогичный приведенному на рис. 4.6.


Рис.4.6.Использование компонентов кабельной системы ЛВС.

При разработке топологии и построении конкретных ЛВС рекомендуется использовать витую пару в тех случаях, если: -есть ограничения на материальные затраты при организации ЛВС; -нужна достаточно простая установка, при которой подключение компьютеров - несложная операция. Следует воздержаться от использования витой пары, если Вы хотите быть абсолютно уверенными в целостности данных, передаваемых на большие расстояния с высокой скоростью. В этих случаях более надежным является применение оптоволоконного кабеля.

4.1.4.Оптоволоконный кабель

В оптоволоконном кабеле цифровые данные распространяются по оптическим волокнам в виде модулированных световых импульсов, а не электрических сигналов. Следовательно, его нельзя вскрыть и перехватить данные. Передача по оптоволоконному кабелю не подвержена электрическим помехам и ведется на чрезвычайно высокой скорости (до 100 Мбит/с, а теоретически возможно до 200 Мбит/с). Основа кабеля - оптическое волокно - тонкий стеклянный цилиндр (жила), покрытая слоем стекла, называемого оболочкой и имеющей отличный от жилы коэффициент преломления (рис. 4.7).


Каждое стеклянное оптоволокно передает сигналы только в одном направлении, поэтому кабель состоит из двух волокон с отдельными коннекторами (рис. 4.8). Жесткость обеспечивает покрытие из пластика, а прочность - волокна кевлара. Оптоволоконный кабель рекомендуется использовать: -при передаче данных на большие расстояния с высокой скоростью по надежной среде передачи. Не рекомендуется использовать: -при ограниченности денежных средств; -при отсутствии навыков установки и корректного подключения оптоволоконных сетевых устройств.

4.2.Узкополосная и широкополосная передачи сигналов

В современных компьютерных сетях для передачи кодированных сигналов по сетевому кабелю наибольшее применение находят две наиболее распространенные технологии: -узкополосная передача сигналов; -широкополосная передача сигналов. Узкополосные (baseband) системы передают данные в виде цифрового сигнала одной частоты (рис. 4.9).


Рис. 4.9. Узкополосная передача.

Сигналы представляют собой дискретные электрические или световые импульсы. При таком способе вся емкость коммуникационного канала используется для передачи одного сигнала или, другими словами, цифровой сигнал использует всю полосу пропускания кабеля. Полоса пропускания - это разница между max и min частотой, которая может быть передана по кабелю. Каждое устройство в таких сетях посылает данные в обоих направлениях, а некоторые могут одновременно их передавать и принимать. Широкополосные (broadband) системы передают данные в виде аналогового сигнала, который использует некоторый интервал частот (рис. 4.10). Сигналы представляют собой непрерывные (а не дискретные) электронные или оптические волны. При таком способе сигналы передаются по физической среде в одном направлении. Если обеспечить необходимую полосу пропускания, то по одному сетевому кабелю одновременно можно передавать несколько сигналов (например, кабельного телевидения, телефона и передача данных).


Рис. 4.10. Широкополосная передача

Каждой передающей системе выделяется часть полосы пропускания. Все устройства (в. т. ч. и компьютеры) настраиваются так, чтобы работать с выделенной им частью полосы пропускания. В широкополосной системе сигнал передается только в одном направлении. Для возможности приема и передачи каждым из устройств необходимо обеспечить два пути прохождения сигнала. Для этого можно: -использовать два кабеля; -разбить полосу пропускания кабеля на два канала, которые работают с разными частотами: один канал на передачу, другой - на прием.

4.3. Кодирование сигналов

Данные, хранимые в РС и передаваемые между ними в ЛВС, представляются в цифровом виде (рис. 4.11). Каждое информационное сообщение (пакет) - это строка битов, содержащая закодированную информацию.


Так как кабель содержит всего две проводящие жилы, то в каждый момент времени по нему можно передать только один бит информации (последовательная передача данных). 1.При широкополосной передаче цифровые данные РС перед передачей по сетевому кабелю преобразуются в аналоговый несущий сигнал синусоидальной формы: u = U*sin(wt+w) Это преобразование называется модуляцией. В зависимости от того, какой из параметров данного сигнала изменяется различают три типа модуляции: амплитудную, частотную и фазовую. Рассмотрим два из них. При амплитудной модуляции (АМ) используется несущий сигнал постоянной частоты (W0). Для передачи бита со значением "1" передается волна несущей частоты. Отсутствие сигнала означает передачу бита "0", т. е.:


При частотной модуляции (ЧМ) используется сигнал несущей с двумя частотами. В этом случае бит "1" представляется сигналом несущей частоты W1, а бит "0" - частоты W2, т. е.:


Обратный процесс - процесс преобразования аналогового сигнала в цифровые данные на РС, которая принимает переданный ей модулированный сигнал называется демодуляцией. 2.При узкополосной передаче используется двуполярный дискретный сигнал. При этом кодирование в сетевом адаптере передающей РС цифровых данных в цифровой сигнал выполняется напрямую. Наиболее простым и часто используемым является кодирование методом без возврата к нулю (NRZ - Non Return to Zero), в котором бит "1" представляется положительным напряжением (H - высокий уровень), а бит "0" - отрицательным напряжением (L - низкий уровень). Т. е. сигнал всегда выше или ниже нулевого напряжения, откуда и название метода. Иллюстрация изложенных методов кодирования сигналов приведена на рис. 4.12.


Рис. 4.12. Варианты кодирования сигналов.

Как при передаче аналоговых, так и цифровых сигналов, если следующие друг за другом биты ровны (оба "0" или оба "1"), то трудно сказать, когда кончается один и начинается другой. Для решения этой задачи приемник и передатчик надо синхронизировать, т. е. одинаково отсчитывать интервалы времени. Это можно выполнить либо введя дополнительную линию для передачи синхроимпульсов (что не всегда возможно, да и накладно), либо использовать специальные методы передачи данных: асинхронный или автоподстройки.

4.4.Асинхронная передача и автоподстройка

При низких скоростях передачи сигналов используется метод асинхронной передачи, при больших скоростях эффективнее использовать метод автоподстройки. Как передатчик, так и приемник снабжены генераторами тактовых импульсов, работающими на одной частоте. Однако невозможно, чтобы они работали абсолютно синхронно, поэтому их необходимо периодически подстраивать. Аналогично обыкновенным часам, которые необходимо периодически корректировать. При асинхронной передаче генераторы синхронизируются в начале передачи каждого пакета (или байта) данных и предполагается, что за это время не будет рассогласования генераторов, которые бы вызвали ошибки в передаче. При этом считается, что все пакеты одной длины (например, байт). Синхронизация тактового генератора приемника достигается тем, что: -перед каждым пакетом (байтом) посылается дополнительный "старт-бит", который всегда равен "0"; -в конце пакета посылается еще один дополнительный "стоп-бит", который всегда равен "1". Если данные не передаются, линия связи находится в состоянии "1" (состояние незанятости). Начало передачи вызывает переход от "1" к "0", что означает начало "старт-бита". Этот переход используется для синхронизации генератора приемника. Поясним этот процесс временной диаграммой (рис. 4.13):


При передаче с автоподстройкой используется метод Манчестерского кодирования, при котором: -тактовый генератор приемника синхронизируется при передаче каждого бита; -и следовательно, можно посылать пакеты любой длины. Синхронизация сигнала данных достигается обеспечением перехода от "H"-уровня к "L"-уровню или наоборот, в середине каждого бита данных (рис. 4.14). Эти переходы служат для синхронизации тактового генератора приемника. Биты данных кодируются: "0" - при переходе "L" а "H" и "1" - при переходе "H" а "L"


Если информация не передается, в линии данных нет никаких переходов и тактовые генераторы передатчика и приемника рассогласованы. При этом виде кодирования переходы происходят не только в середине каждого бита данных, но и между битами, когда два последовательных бита имеют одно и то же значение. После простоя линии необходима предварительная синхронизация генератора, которая достигается посылкой фиксированной последовательности битов (преамбула и биты готовности). Например, можно использовать преамбулу из восьми битов: 11111110, где первые 7 битов используются для начальной синхронизации, а последний - для сообщения приемнику, что преамбула окончилась, т. е. далее пойдут биты данных.

4.5.Плата сетевого адаптера (СА)

Плата сетевого адаптера выступает в качестве физического интерфейса или соединения между компьютером и сетевым кабелем. Платы вставляются в слоты расширения системной шины всех сетевых компьютеров и серверов. Назначение платы сетевого адаптера: -подготовка данных, поступающих от компьютера, к передаче по сетевому кабелю; -передача (или прием) данных другому компьютеру; -управление потоком данных между компьютером и кабельной системой. 1. Подготовка данных. Плата сетевого адаптера принимает циркулирующие по системной шине параллельные данные, организует их для последовательной (побитовой) передачи. Этот процесс завершается переводом цифровых данных компьютера в электрические или оптические сигналы, которые и передаются по сетевым кабелям. Отвечает за это преобразование трансивер. 2. Сетевой адрес. Помимо преобразования данных плата СА должна указать свой адрес, чтобы ее можно было отличить от других плат. За каждым производителем СА закреплен стандартом IEEE некоторый интервал адресов. Производители "прошивают" эти адреса в микросхеме плат. Благодаря этому, каждый СА и, следовательно, каждый сетевой компьютер имеет уникальный адрес в сети. При передаче данные из памяти компьютера через системную шину поступают в СА. Обычно они поступают быстрее, чем их способна передать плата СА, поэтому она должна иметь буфер для их временного хранения. Это позволяет согласовать скорости передачи по шине без потерь производительности и искажения данных. 3. Передача и управление данными. Перед посылкой данных по сети плата СА проводит "электронный диалог" с принимающим СА, во время которого они "оговаривают": -максимальный размер блока передаваемых данных; -объем данных, передаваемый без подтверждения о получении; -интервалы между передачами блоков; -объем данных, который может принять СА, не переполняясь; -скорость передачи данных. Все эти действия каждый СА выполняет в строго определенной последовательности в соответствие со строго определенными правилами, которые называются протоколами и подробно будут рассматриваться ниже. 4. Сетевые кабели и соединители. Каждый тип кабеля имеет различные сетевые характеристики, которым должен соответствовать и СА. Поэтому платы СА рассчитаны на работу с определенным видом кабеля (коаксиал, витая пара и т. д.). Некоторые СА могут содержать несколько типов соединителей для различных физических сред.

Классификация сетей по типу среды для передачи данных

По типу среды для передачи данных сети делятся на проводные (медный коаксиальный кабель, витая пара, оптическое волокно и т.д.) и беспроводные (радиоканалы, передача данных в инфракрасном диапазоне и т.д.).

Классификация сетей по скорости передачи информации

По скорости передачи информации сети можно разделить на низко- (до 10 Мбит/с), средне- (до 100 Мбит/с) и высокоскоростные (свыше 100 Мбит/с).

Классификация сетей по способу передачи

По способу передачи данных можно выделить:

    сети коммутации каналов;

    сети коммутации пакетов.

В сетях коммутации каналов предполагается, что между источником и приемником существует выделенный маршрут, типичным примером является телефонная сеть. Является неэффективной, так как канал резервируется на все время соединения, достоинством этой технологии служит ее прозрачность, так как канал устанавливается на все время соединения.

В сетях коммутации пакетов длинные сообщения разбиваются на короткие пакеты. Каждый пакет перемещается от отправителя к получателю через промежуточные узлы сети. Основным преимуществом является гибкость, совместное использование одних каналов связи, возможность менять приоритет передаваемой информации, недостатком - невозможность гарантировать своевременную доставку пакетов.

Классификация сетей по роли компьютеров в них

По роли компьютеров в сетях можно выделить следующие типы сетей:

    peer-to-peer network (p2p) - одноранговая сеть;

    client\server network (server-based network) - сеть с выделенным сервером;

    смешанные сети.

Сервер - специально выделенный высокопроизводительный компьютер, управляющий работой сети и/или предоставляющий другим компьютерам сети свои ресурсы (программное обеспечение, сервисы, файлы, устройства), отвечающий на запросы клиентов.

Клиентский компьютер (клиент, рабочая станция) - компьютер рядового пользователя сети, получающий доступ к ресурсам сервера (серверов).

Администратор сети - человек, обладающий полномочиями для управления компьютерами, пользователями и ресурсами в сети.

Администрирование сети - управление сетью: настройка сетевого оборудования, обеспечение доступа к данным, безопасность, работа с пользователями.

Одноранговые сети

В одноранговой сети все компьютеры равноправны. Каждый из них может выступать как в роли сервера, так и клиента, каждый пользователь является администратором своего компьютера, как следствие в таких сетях хаос часто становится нормой.

Преимущества:

    легкость в установке и настройке;

    независимость отдельных компьютеров и их ресурсов друг от друга;

    недороги при развертывании и поддержке;

    не нужен администратор.

Недостатки:

    пользователи должны помнить столько паролей, сколько сетевых ресурсов;

    резервное копирование для каждого компьютера;

    затруднен поиск информации;

    низкая защищенность.

Число компьютеров в одноранговых сетях обычно не превышает 10. Примерами могут служить домашние сети и сети небольших офисов.

Сеть с выделенным сервером

Сети с выделенным сервером, как правило, создаются в крупных организациях.

Преимущества:

    централизованное управление учетными записями пользователей, безопасностью и доступом;

    пользователю нужен лишь один пароль.

Недостатки:

    неисправность сервера может сделать всю сеть неработоспособной;

    наличие квалифицированного персонала для обслуживания сети;

    высокая стоимость.

Физическое устройство сетей

Физическое устройство сети определяется в первую очередь средой, которая будет использована для передачи данных. От среды зависит, какое сетевое оборудование будет выбрано для ее создания, и то какую топологию будет иметь полученная сеть.

27. Сетевое оборудование.

Оборудование (оконечное оборудование)

Для создания сетевой среды с использованием кабелей, обычно требуются специальные коннекторы , закрепляемые на их концах. Затем кабель одним концом вставляется в сетевой адаптер (сетевую плату), устанавливаемую в компьютер и позволяющую подключить его к сети, а другим - в какое-либо устройство связи (концентратор, мост, коммутатор, маршрутизатор, шлюз и т.д.) Если же используется беспроводной сетевой адаптер, то взаимодействие с сетью происходит за счет передачи сигнала между адаптером и точкой доступа , соединенной с локальной сетью.

Сетевые адаптеры (сетевые карты) требуются для подключения к сетевой среде. Современные компьютеры обычно оснащены адаптерами Ethernet и Wi-Fi. Сетевой адаптер должен иметь нужный разъем для подключения коннектора и уникальный физический адрес (MAC-адрес), используемый для однозначной идентификации компьютера в данном сегменте сети. Для определения MAC-адреса можно использовать, например, команду:

Найти информацию о «Физическом адресе» можно и в свойствах сетевого адаптера.

Повторители и усилители (на физическом уровне) выполняют усиление передаваемого сигнала.

Концентраторы (hub) организуют рабочую группу, представляет собой активный центральный элемент звезды. Работают на физическом уровне. Их основная задача - принять, усилить и ретранслировать сигнал, полученный от одного компьютера, во все остальные активные порты. Обработка сигнала не производится.

Мосты и коммутаторы (bridge и switch) соединяют два или несколько сегментов сети, разделяя трафик в них, служат для соединения однотипных сетей (использующие одинаковые протоколы). Помогают снизить количество коллизий в сети, так как поддерживают таблицу соответствия своих портов и MAC-адресов компьютеров. Эти устройства работают не только на физическом, но и сетевом уровне модели OSI. Различие между мостами и коммутаторами заключается в том, что мост в каждый момент времени может передавать только один кадр, а коммутатор работает сразу с несколькими портами параллельно. Большинство современных сетей строится на коммутаторах.

Маршрутизаторы (router) работают на сетевом уровне. Применяется в сетях со сложной конфигурацией, использующие разные способы передачи данных, для эффективной работы с трафиком. В их задачу входит анализ адресов, определение наилучшего маршрута доставки пакета данных. Конечно, маршрутизаторы работают и на более низких уровнях модели OSI - восстанавливают уровень и форму передаваемого сигнала, как мосты и коммутаторы - позволяют избежать столкновений. При этом маршрутизаторы изменяют передаваемые кадры, фильтруют сетевой трафик, ведут статистику о передаваемых данных, проводят авторизацию пользователя, позволяют строить виртуальные локальные сети и т.д. Шлюзы - устройства, позволяющие объединять разнородные системы, использующие разные сетевые архитектуры, работающие с разными протоколами.

Модемы (модулятор-демодулятор) осуществляют соединение передающего устройства с каналами связи, работает на канальном уровне, например, позволяет осуществлять передачу данных компьютерами по телефонным проводам.

28. Доступ к среде передачи.

С сетевой топологией тесно связано понятие способа доступа к среде передачи , определяющего как компьютеры должны отправлять и принимать данные по сети. Примером могут служить:

    множественный доступ с контролем несущей и обнаружением столкновений; Если кабель свободен, любой компьютер может начать передачу данных, остальные ждут окончания передачи. При возникновении коллизии передача приостанавливается на случайное время, после чего проводится еще одна попытка передачи данных. Этот метод используется в сетях Ethernet.

    множественный доступ с контролем несущей и предотвращением столкновений ; Этот метод отличается от предыдущего тем, что перед передачей данных компьютер посылает в сеть специальный пакет, сообщая остальным компьютерам о своем намерении начать трансляцию. Пропускная способность снижается. Используется в беспроводных сетях.

    передача маркера . От одного компьютера к другому курсирует блок данных, называемый маркером .

Передачу данных осуществляет компьютер, который «захватил» маркер. Коллизии отсутствуют.

Обычно топология сети и доступ к среде передачи определяются сетевым оборудованием, на основе которого строится сеть.

29. Топология.

В контексте компьютерной сети понятие топология означает способ соединения друг с другом сетевых устройств (оконечных систем, станций, хостов) и кабельной инфраструктуры. Распространенными сетевыми топологиями являются общая шина, кольцо и звезда.

Общая шина - топология сети, при которой станции присоединяются к общей среде передачи, которая представляет собой линейный кабель. Передаваемый сигнал распространяется по всей длине кабеля и принимается всеми станциями, но обрабатывает их только тот компьютер, аппаратный MAC-адрес сетевого адаптера которого записан в кадре как адрес получателя.

Эта топология проста в реализации и дешева. К недостаткам можно отнести:

    трудность масштабирования , сложно увеличить количество компьютеров в сегменте такой сети;

    в каждый момент времени передачу может вести только один из компьютеров. Если передачу одновременно начинают два или больше компьютеров, то возникают коллизии , ведущие к тому, что данные приходится передавать вновь. Производительность такой сети при большом объеме передаваемой информации и числе компьютеров снижается;

    при повреждении шины вся сеть перестает работать.

В настоящее время эта топология используется редко.

Кольцо (Ring)

Кольцо - топология сети, при которой станции соединены с повторителями, образующими замкнутый контур. Передаваемые сигналы распространяются по кольцу в одном направлении и могут приниматься всеми станциями.

На основе этой топологии можно строить сети большой протяженности, так как каждый компьютер выступает в роли повторителя. Из-за отсутствия коллизий сети обладает устойчивостью к перегрузкам. К недостаткам можно отнести:

    увеличивается время передачи информации, так как она передается по кольцу;

    добавление новых компьютеров требует остановки работы всей сети;

    выход из строя хоты бы одного компьютера или сегмента кабеля нарушает работу всей сети;

    поэтому прокладывают обычно два кольца, что удорожает сеть.

Звезда (Star)

Звезда - топология локальной сети, при которой все станции соединены с центральным коммутатором. В этом случае центральный узел называют хабом, или концентратором.

Хаб выполняет функции повторителя, восстанавливает приходящие сигналы и пересылает их всем остальным подключенным к нему компьютерам и устройствам.

Такая организация сети является более надежной. Используется довольно часто. Если вместо концентратора установлены «интеллектуальных» сетевые устройства (мост, коммутатор, маршрутизатор), то это позволяет проводить не только ретрансляцию, но и управление передаваемыми сигналами.

Ячеистая (Mesh)

В таких сетях существует несколько маршрутов для доставки информации. Имеют высокую отказоустойчивость. Развертывание таких сетей на базе кабельных соединений достаточно дорого, так как требует увеличенного количества кабеля, более сложной настойки сетевого оборудования.

Чаще эта топология реализуется в беспроводных сетях.

Смешанные (гибридные) сети

Реальные сети постоянно расширяются и модернизируются, поэтому обычно топология сети представляет собой комбинацию нескольких базовых топологий.

Star-Bus (звезда на шине)

Star-Ring (звезда на кольце)

Hybrid Mesh (гибридная ячеистая структура)

Tree (дерево, звезда на звезде)

Выбор топологии зависит от ряда факторов, таких как надежность, расширяемость и производительность, стоимость, и обычно определяется средой, используемой для передачи данных.

30. Проводные технологии.

Провода переменного тока

Можно использовать при передаче данных на небольшие расстояния.

Телефонные провода

Модем, цифровая/аналоговая связь, бод.

    телефонная коммутированная сеть общего пользования (PSTN);

    цифровая сеть интегрированного обслуживания (ISDN - Integrated Services Digital Network);

    цифровая связь (ADSL - Asymmetric Digital Subscriber Line).

«Витая пара» (twisted pair)

Витая пара состоит из двух изолированных медных проводов, свитых друг с другом, представляет собой один канал связи, несколько витых пар объединяются в кабель, обернутый в плотную защитную оболочку. Скручивание снижает перекрестные помехи от соседних проводов пары. Используется в телефонных сетях и для сетей внутри зданий. Подвержена помехам, поэтому чаще в сетях применяется экранирование с использованием металлической оплетки или оболочки, для телефонных линий - неэкранированная.

Скорость до 100 Гбит/сек, до 2 км без повторителей.

Самый распространенный тип кабеля для создания компьютерных сетей.

Коаксиальный кабель (coaxial cable)

Подобно витой пары состоит из двух проводников, но отличается по конструкции, может работать в более широком диапазоне частот. Коаксиальный кабель состоит из пустотелого внешнего цилиндрического проводника, внутри которого расположен внутренний провод. Внутренний проводник находится в изоляторе, внешний покрывается оболочкой или экраном. Диаметр от 1 до 2,5 см. Может использоваться для передачи данных на большие расстояния, в частности для передачи телесигналов, международной телефонии, компьютерных сетей.

Тонкий - скорость до 10 Мбит/сек на расстояние до 185 м.

Толстый - скорость до 10 Мбис/сек на расстояние до 500 м

В настоящее время используется достаточно редко для создания сетей.

Оптоволокно (fiber optic cable)

Оптическим волокном называют тонкую среду (от 2 до 125 мкм в диаметре), способную передавать световой луч. Для изготовления оптического волокна используют разного рода стекла и пластмассы. Наименьшие потери достигаются в волокне из сверхчистого плавленого кварца. Состоит из трех концентрических секций, две внутренние изготовлены из стекла с различными показателями преломления, сверху светопоглощающая оболочка. Волокна собирают в оптические кабели. Имеет большую пропускную способность, меньшее затухание, электромагнитная изоляция.

Скорость до 10 Гбит/сек, длина сегмента до 40 000 м, рабочая длина волны в диапазоне от 850 до 1300 нм.

К недостаткам можно отнести высокую стоимость кабеля, сложный монтаж, необходимость использования дополнительных трансиверов, преобразующих световые сигналы в электрические и обратно.

Преимущества кабельного соединения:

Недостатки:

    трудности при монтаже (доступ к системе канализации, прокладка внутри готовых зданий, привязка рабочих мест);

    кабельное хозяйство требует обслуживания.

Архитектура Ethernet фактически объединяет набор стандартов, имеющих как общие черты, так и отличия. Скорость передачи данных до 10 Гбит/с. Технология Ethernet использует практически любой вид кабеля, позволяет проводить масштабирование, наращивать мощность сети. Поэтому сегодня архитектура Ethernet является самой распространенной в локальных сетях.

31. Беспроводные технологии.

Для телекоммуникации могут быть использованы электромагнитные волны, которые распространяются по атмосфере или в вакууме, а именно (в порядке повышения пропускной способности и увеличения частоты колебания волны):

    радиосвязь (сотовая, спутниковая) (от 30 МГц до 1 ГГц). Обеспечивает высокую дальность передачи информации;

    связь в микроволновом диапазоне (от 2 до 40 ГГц) (Bluetooth, WLAN);

    инфракрасная связь (от 3 · 1011 до 2 · 1014 Гц). Используется для передачи данных на близких расстояниях, например, для взаимодействия с портативными (мобильными) устройствами. Источник и приемник должны быть в прямой видимости.;

    световое излучение в видимом диапазоне. Используется редко.

Обычно сигналы низких частот распространяются от антенны во всех направлениях, сигналы более высоких частот можно сфокусировать в направленный луч.

Если не используется направленная антенна, и на пути нет препятствий, радиоволны распространяются по всем направлениям равномерно и мощность сигнала падает пропорционально квадрату расстояния между передатчиком и приемником. Они используются там, где не существует кабельных каналов или их создание по каким-то причинам невозможно или слишком дорого для передачи телевизионного, радио и других аналоговых сигналов.

Преимущества

    возможность создания в труднодоступных местах;

    не требуют поддержки и обслуживания.

Недостатки:

    не являются помехоустойчивыми;

    менее защищены от прослушивания, чем проводные сети (уровень защиты WEP и WPA).

Wi-Fi (Wireless Fidelity, беспроводная точность) - технология обеспечивающая подключение мобильных пользователей к Интернету. Объединяет несколько стандартов на основе спецификации IEEE 802.11 (a, b, g). Невысокая дальность передачи данных.

WiMAX (Worldwide Interoperability for Microwave Access) - это коммерческое название стандарта беспроводной связи 802.16, принятого в январе 2003 года и поддержанного промышленной группой. В отличие от уже довольно популярного беспроводного доступа Wi-Fi, WiMAX меньше привязан к конкретным диапазонам - его варианты рассчитаны на частоту от 2 до 11 ГГц и от 10 до 66 ГГц. Ширина канала, занимаемого в эфире двумя устройствами, может выбираться в более широких, чем у Wi-Fi, пределах - от 1,5 до 28 МГц. «Изощренная» модуляция позволяет использовать радиоспектр с эффективностью 5 бит на каждый герц (у Wi-Fi 2,7 бит на герц), поэтому скорость достигает 134 Мбит/с (в канале шириной 28 МГц). Но главное преимущество WiMAX - в дальнобойности: максимальное расстояние между устройствами может достигать 50 км. К тому же между источником и приемником может отсутствовать прямая видимость. Мощность сигнала и большая устойчивость к отражениям позволяют WiMAX работать даже там, где Wi-Fi бессилен.

Технология Bluetooth (IEEE 802.15.1) использует радиосигнал с частотой 2,4 ГГц. Имеет низкое энергопотребление, позволяет устройствам устанавливать взаимодействие при минимальном участии пользователя, низкие показатели по дальности и пропускной способности.

32. Протоколы.

Протокол - это правила (соглашения, стандарты) передачи информации в сети. Протокол определяет формат и очередность сообщений, которыми обмениваются два и более устройства, а также действие, выполняемые при передаче и/или приеме сообщений либо при наступлении иных событий.

Так как в процесс взаимодействия вступают разные системы, то реализовывать сетевое соединение в виде одного, монолитного блока не имеет смысла, вводится понятие архитектуры протоколов, когда вместо одного модуля, обслуживающего взаимодействие компьютеров, имеется структурированный набор модулей, реализующих коммуникационные функции.

Можно провести следующую аналогию, когда директор одного предприятия пишет письмо директору другого предприятия, то, написав письмо и указав того, кому оно адресовано, он отдает его секретарю. Секретарь находит адрес получателя, вкладывает письмо в конверт, делает отметку об исходящих в своих документах, относит письмо на почту. Почта обеспечивает доставку письма, которое получает секретарь, делает отметку во входящих, то есть всегда можно проверить, не пропало ли письмо, распечатывает и кладет на стол директора. Каждый уровень взаимодействия не заботиться о том, что происходит ниже его, уверен в том, что он отработает правильно, но может и проверить правильность работы. На каждом уровне к письму добавляется дополнительная идентифицирующая информация, характерная для данного уровня.

Таким образом, можно рассмотреть упрощенную архитектуру протоколов сетевого взаимодействия. В процессе сетевого взаимодействия вовлечены: приложения, компьютеры и сети, с учетом этого естественно решать задачу взаимодействия на трех независимых уровнях:

    уровень доступа к сети;

    транспортный уровень;

    прикладной уровень.

Уровень доступа к сети обеспечивает обмен данными между компьютером и сетью, компьютер, передающий данные, сообщает сети адрес компьютера, которому эти данные предназначены, причем тип сети может быть самый разный.

Все задачи, которые связаны с надежностью передачи, выполняет транспортный уровень, проверяет, чтобы все данные достигли адресата и были получены им в нужном порядке.

На прикладном уровне приложения выполняют необходимые им действия, осуществляют взаимодействие с пользователем, если необходимо запрашивают сетевую среду у транспортного уровня, например, для передачи файлов.

На каждом уровне добавляется служебная информация, необходимая для передачи данных (заголовки), на каждом уровне может быть свое деление на единицы обмена (пакеты).

На каждом уровне требуется информация для идентификации получателя, так на уровне приложений  это будет точка доступа к службе (порт), транспортном уровне  логическое имя компьютера, а на сетевом  имя сетевого интерфейса (MAC-адрес).

Разные производители используют различные форматы данных и различные протоколы обмена данными, чтобы они могли взаимодействовать между собой, разрабатываются общие стандарты. Существуют несколько распространенных архитектур протоколов:

    стек протоколов TCP/IP;

    эталонная модель OSI;

    сетевая архитектура IBM, привязанная к оборудованию этой фирмы.

33. Стек протоколов TCP/IP.

Хотя для этой модели отсутствует официальная модель, она является на настоящий момент времени самой распространенной, в ней можно выделить пять уровней протоколов, образующие стек протоколов:

    прикладной уровень;

    транспортный уровень;

    сетевой уровень;

    канальный уровень;

    физический уровень.

Физический уровень отвечает за физический интерфейс между устройством и средой передачи данных, на нем идет работа с характеристиками передающей среды, природой сигналов, скоростью передачи данных и т.п. Поддерживает основные технологии локальных сетей - Ethernet, Wi-Fi, Token Ring, Bluetooth и т.д.

Канальный уровень организует передачу данных в имеющейся физической среде.

Сетевой уровень отвечает за маршрутизацию сообщений при прохождении по сети (Internet Protocol, IP).

Транспортный уровень отвечает за надежность передачи данных. Поддерживает два протокола:

    Transmission Control Protocol, TCP, протокол управления передачей. Обеспечивает гарантированную доставку пакетов в нужном порядке и без ошибок. Используется в тех приложениях, где важно обеспечить целостность передачи данных;

    функции Финансовые функции финансовых вычислений без построения длинных и сложных... быть успешно использован и в задачах, содержащих финансовые функции . Рассмотрим подбор значения вклада для...

  • 1 финансовые функции в excel

    Анализ

    1. Финансовые функции в Excel. Финансовые функции в Excel позволяют выполнить целый ряд финансовых вычислений без построения длинных и... сложных формул. Выделяют четыре группы функций :  функции ...

  • «финансовое право » 2001 год оглавление

    Документ

    Задач. Во-вторых, осуществление государством финансовых функций протекает (в зависимости от их содержания... страны, имеет непосредственное отношение к выполнению функций фи­нансовой деятельности государства и муниципальных образо­ваний. По...

  • Финансовая математика

    Пояснительная записка

    9. Расчеты на компьютере. Использование стандартных финансовых функций EXSEL. Условные обозначения основных параметров... в левом окне сделать выбор категории функции финансовые ”. После чего в правом, прокручивая список...

  • Учебное пособие «Финансовая математика»

    Учебное пособие

    6. Финансовые функции ЕХСЕL как основа практических расчетов в современных условиях 6.1. Сущность финансовых функций 6.2. Использование финансовых функций в финансовых операциях...

Различные критерии, такие как скорость передачи данных и стоимость, помогают определить наиболее подходящую среду передачи данных. Тип материала, используемого в сети для обеспечения соединений, определяет такие параметры, как скорость передачи данных и их объем. Другим фактором, влияющим на выбор типа среды передачи данных, является ее стоимость.

Для достижения оптимальной производительности необходимо добиться, чтобы сигнал при движении от одного устройства к другому как можно меньше затухал. Причиной затухания сигнала может быть несколько факторов. Как будет показано далее, во многих носителях используется экранирование и применяются технические решения, предотвращающие ослабление сигнала. Однако использование экранирования становится причиной увеличения стоимости и диаметра кабеля, а также приводит к усложнению его прокладки.

Кроме того, в сетевых средах передачи данных могут использоваться различные типы оболочек. Оболочка, являясь внешним покрытием кабеля, обычно изготавливается из пластика, нелипкого покрытия или композитного материала. При проектировании локальной сети следует помнить, что кабель, проложенный между стенами, в шахте лифта или проходящий по воздуховоду системы вентиляции, может стать факелом, способствующим распространению огня из одной части здания в другую. Кроме того, пластиковая оболочка в случае ее возгорания может стать причиной возникновения токсичного дыма. Для исключения подобных ситуаций существуют соответствующие строительные нормы, нормы пожарной безопасности и нормы техники безопасности, которые определяют типы оболочек кабелей, которые могут использоваться. Поэтому при определении типа среды передачи данных для использования при создании локальной сети следует (наряду с такими факторами, как диаметр кабеля, его стоимость и сложность прокладки) также учитывать и эти нормы.

Тип среды передачи, используемых при создании сети, определяет объем и скорость передачи данных.

Канальный уровень

Все данные в сети отправляются источником и движутся в направлении получателя. Функцией физического уровня является передача данных. После того как данные отправлены, канальный уровень эталонной модели OSI обеспечивает доступ к сетевой среде передачи данных и физическую передачу в среде, позволяющей данным определять местоположение адресата в сети. Также канальный уровень отвечает за выдачу сообщений об ошибках, учет топологии сети и управление потоком данных.

В эталонной модели OSI канальный и физический уровни являются смежными. Канальный уровень обеспечивает надежный транзит данных через физический уровень. Этот уровень использует адрес управления доступом к среде передачи данных (Media Access Control, MAC). Как было сказано ранее, канальный уровень решает вопросы физической адресации (в противоположность сетевой или логической адресации), топологии сети, дисциплины линий связи (каким образом конечной системе использовать сетевой канал), уведомления об ошибках, упорядоченной доставки кадров и управления потоком информации. Кроме того, канальный уровень использует МАС-адрес в качестве средства задания аппаратного или канального адреса, позволяющего нескольким станциям коллективно использовать одну и ту же среду передачи данных и одновременно уникальным образом идентифицировать друг друга. Для того чтобы мог осуществляться обмен пакетами данных между физически соединенными устройствами, относящимися к одной локальной сети, каждое устройство-отправитель должно иметь МАС-адрес, который оно может использовать в качестве адреса пункта назначения.

МАС-адреса

Каждый компьютер, независимо от того, подключен он к сети или нет, имеет уникальный физический адрес. Не существует двух одинаковых физических адресов. Физический адрес (или МАС-адрес) зашит на плате сетевого адаптера (рис. 2.7).

Рис 2.7. Физический адрес компьютера зашит

на плате сетевого адаптера

Таким образом, в сети именно плата сетевого адаптера подключает устройство к среде передачи данных. Каждая плата сетевого адаптера, который работает на канальном уровне эталонной модели OSI, имеет свой уникальный МАС-адрес.

В сети, когда одно устройство хочет переслать данные другому устройству, оно может установить канал связи с этим другим устройством, воспользовавшись его МАС-адресом. Отправляемые источником данные содержат МАС-адрес пункта назначения.

По мере продвижения пакета в среде передачи данных сетевые адаптеры каждого из устройств в сети сравнивают МАС-адрес пункта назначения, имеющийся в пакете данных, со своим собственным физическим адресом. Если адреса не совпадают, сетевой адаптер игнорирует этот пакет, и данные продолжают движение к следующему устройству.

Если же адреса совпадают, то сетевой адаптер делает копию пакета данных и размешает ее на канальном уровне компьютера. После этого исходный пакет данных продолжает движение по сети, и каждый следующий сетевой адаптер проводит аналогичную процедуру сравнения.

Сетевые адаптеры

Сетевые адаптеры преобразуют пакеты данных в сигналы для передачи по сети. В ходе изготовления фирмой-производителем каждому сетевому адаптеру присваивается физический адрес, который заносится в специальную микросхему, устанавливаемую на плате адаптера. В большинстве сетевых адаптеров МАС-адрес зашивается в ПЗУ. Когда адаптер инициализируется, этот адрес копируется в оперативную память компьютера. Поскольку МАС-адрес определяется сетевым адаптером, то при замене адаптера изменится и физический адрес компьютера; он будет соответствовать МАС-адресу нового сетевого адаптера.

Для примера можно представить себе гостиницу. Предположим далее, что комната 207 имеет замок, открывающийся ключом А, а комната 410 - замок, открывающийся ключом F. Принято решение поменять замки в комнатах 207 и 410. После замены ключ А будет открывать комнату 410, а ключ F- комнату 207. В этом примере замки играют роль сетевых адаптеров, а ключи - роль МАС-адресов. Если адаптеры поменять местами, то изменятся и МАС-адреса.

Резюме

Функцией физического уровня является передача данных.

Для соединения компьютеров может использоваться несколько типов сред передачи данных.

Коаксиальный кабель, состоящий из внешнего цилиндрического пустотелого проводника, окружающего единственный внутренний провод.

Неэкранированная витая пара, использующаяся во многих сетях и представляющая собой четыре пары скрученных между собой проводов.

Экранированная витая пара, которая объединяет методы экранирования, подавления помех и скручивания проводов.

Оптоволоконный кабель, являющийся носителем, который способен проводить модулированный световой сигнал.

Для определения наиболее подходящего типа среды передачи данных могут использоваться различные критерии, например скорость передачи данных и стоимость.

Канальный уровень эталонной модели OSI обеспечивает доступ к среде передачи данных и саму физическую передачу данных, при которой данные имеют возможность определять местоположение получателя в сети.

Канальный уровень обеспечивает надежный транзит данных через физический канал связи.

Этот уровень использует МАС-адрес – физический адрес, информация о котором находится на плате сетевого адаптера.

Сетевые адаптеры преобразуют пакеты данных в сигналы, которые и посылают в сеть.

Каждому адаптеру физический адрес присваивается фирмой-производителем.

Контрольные вопросы

1. Как называются все материалы, обеспечивающие физические соединения в сети?

A. Среда приложений.

B. Среда обучения.

На физическом уровне обычно применяется один из следующих четырех типов среды передачи:

Кабель “витая пара” (симметричный кабель);

Коаксиальный кабель (тонкий или толстый);

Оптоволоконный кабель;

Окружающее пространство.

Каждая из этих сред отличается друг от друга необходимым оборудованием, пропускной способностью, помехоустойчивостью, максимальной протяженностью, сложностью установки, собственником инфраструктуры и многими другими параметрами. Характеристики сред будем рассматривать со следующих основных четырех точек зрения: пропускной способности, помехоустойчивости, сложности установки, популярности среди пользователей. Общее впечатление с этих позиций дает табл.5.1.

Таблица 5.1

Сравнительные характеристики сред передачи данных

Пропускная способность – это область (спектр) частот гармонических колебаний, пропускаемых средой передачи, т. е. полоса пропускания. Полоса пропускания измеряется в герцах, а скорость передачи – в битах в секунду. Ширина полосы пропускания среды должна быть достаточной для прохождения существенных амплитуд частотного спектра сигналов. При повышении спектра полосы пропускания, например, за счет возросшей частоты сигналов, среда может не успевать изменять свое энергетическое состояние, что и приведет к искажению сигналов. Мы уже отмечали границы полосы пропускания кабельных сред (см. рис.3.2). Расширим эту схему использованием окружающего пространства различными владельцами, как показано на рис.5.1.

Скорость пропускания зависит не только от ширины полосы, но и от способов модуляции и кодирования. Например, передача последовательности одинаковых цифр манчестерским кодом идет на частоте вдвое большей, чем потенциальным кодом без возвращения к нулю.

Рис. 5.1. Полосы пропускания, закрепленные за различными службами

С пропускной способностью связана такая характеристика, как способность к широковещанию. Эта способность определяется, в основном, конструкцией и материалом среды передачи. “Витая пара” – для двухточечной связи, коаксиал – для широковещания.

Помехозащищенность среды также зависит от конструкции. Она измеряется отношением мощности сигнала к мощности шума. Чем больше это отношение (измеряется в децибелах), тем выше помехоустойчивость. Качественные оценки этого параметра уже даны в табл. 5.1.

При распространении в среде сигнал любой частоты теряет свою мощность из-за рассеивания или излучения. Затухание сигнала определяет максимальную допустимую протяженность среды при фиксированных мощности передатчика и чувствительности приемника. Для увеличения протяженности обычно применяются усилители мощности, повторители, ретрансляторы.

Измеряется затухание в децибелах как отношение мощности сигнала в начале и в конце единицы длины среды передачи (обычно 1 км) на фиксированной частоте передачи.

Чем толще кабель, тем труднее его прокладывать (требуется больший радиус закругления). Но более толстые проводники обладают меньшим затуханием и допускают большую длину передачи без применения дополнительного оборудования.

Стоимость среды передачи - стоимость проектно-монтажных работ по строительству этой линии и затрат на ее эксплуатацию. Стоимость является определяющим фактором популярности применения той или иной среды.

Рассмотрим характеристики конкретных сред.

Кабель “витая пара состоит из двух изолированных проводников, перевитых между собою. По определенной частоте витков, типу изоляции (бумага, шелк, поливинил) и некоторым другим параметрам кабель “витая пара” разделяется на несколько категорий. В целом, чем выше категория кабеля, тем больший объем информации по нему можно передать, тем меньше перекрестные наводки между проводниками (больше витков на 1 м погонный кабеля), тем он дороже. По сравнению с другими средами “витая пара” обладает меньшей пропускной способностью и сравнительно низкой помехозащищенностью. Вместе с тем, кабель “витая пара” прост в установке и является безусловным лидером в реализации Физического уровня по популярности.

В соответствии со стандартом США EIA/TIA – 568А по проектированию и созданию Структурированных Кабельных Систем (СКС) допускается применение четырех типов кабелей. Наиболее популярным из них является кабель неэкранированный с витыми парами из медных проводников UTP (Unsielded Twisted Pair). Категории 3, 4, 5 этого кабеля поддерживают рабочие частоты 16, 20 и 100 МГц. Соответствие выпускаемых промышленностью кабелей предъявляемым требованиям устанавливается сертификатом. В США такого рода сертификацию проводит независимая организация UL по двум направлениям: по электробезопасности и по техническим характеристикам. Классификация кабелей различных фирм – производителей по уровням, соответствующая стандарту качества ISO 9002, приведена в табл. 5.2.

Таблица 5.2

Классификация кабелей различных производителей

Рабочая полоса частот (скорость передачи) Фирма – производитель
Anixter UL EIA/TIA AT&T
Передача речи, данных (до 20 кбит/с) Level 1 Level І - -
1 МГц (1 Мбит/с) Level 2 Level ІІ - -
16 МГц (16 Мбит/с) Level 3 Level ІІІ Category 3 Category ІІІ
20 МГц (20 Мбит/с) Level 4 Level ІV Category 4 Category ІV
100 МГц (100 Мбит/с) 155 МГц (155 Мбит/с) Level 5 Level V Category 5 Category V

Кабель “витая пара” категории 3 применяется в локальных низкоскоростных сетях со скоростью до 20 Мбит/с на расстоянии до 100 м. Кабель категории 5 также применяется на расстояниях 100-200 м, но со значительно более высокой скоростью передачи.

Коаксиальный кабель представляет собою центральный медный провод, окруженный слоем изолирующего материала (полиэтилена), который заключен внутри второго проводника в виде оплетки. Вся конструкция защищена от механических повреждений пластиковой оболочкой. По сравнению с “витой парой” коаксиал обладает значительно большей пропускной способностью и помехозащищенностью.

Выпускаются тонкий узкополосный и толстый широкополосный коаксиальные кабели. С помощью тонкого кабеля можно передавать информацию на расстояния до 10 км со скоростью до 50 Мбит/с. Толстый кабель имеет параметры 50 км и 300-500 Мбит/с, соответственно. Лучшие характеристики и стоят дороже. К недостаткам следует отнести большие по сравнению с “витой парой” размеры и вес. Следствием этого является сложность монтажа и обслуживания, что и привело к снижению популярности использования в качестве среды Физического уровня.

Оптоволоконный кабель конструктивно весьма прост, но требует профессионального монтажа. Он состоит из волокон диаметром от единиц до сотен микрон, окруженных твердым покрытием и помещенных в защитную оболочку. Ночной светильник, имитирующий салют, и есть пучок таких волокон без внешней общей оболочки. Вначале оптоволоконные кабели изготавливались из чистого кварцевого стекла, но сейчас уже разработаны технологии на основе пластмассы. Оболочка световода выполняет функцию зеркала для обеспечения эффекта полного внутреннего отражения. Источником распространяемого по кабелю света является светодиод, а на другом конце детектор преобразует световые колебания в электрические.

Внешние электромагнитные поля никак не искажают световые сигналы, поэтому оптоволоконный кабель хорошо защищен от помех. Диапазон пропускной способности у различных видов оптического волокна довольно широк. Однако даже нижней границы современные технологии передачи достигнуть не могут, так что есть неиспользуемый пока ресурс. В установке оптоволоконный кабель не сложен, но требует профессиональных приспособлений для сопряжения соседних отрезков кабеля и высокой квалификации исполнителей. Сочетание высоких свойств оптоволоконного кабеля даже при пока относительно высокой цене обусловило растущую популярность его использования.

Окружающее пространство – атмосфера, стратосфера, ближний космос - являет собой особый случай: здесь сама среда передачи обычно является общественным достоянием. Именно поэтому ее использование тщательно регулируется в пределах каждого географического региона государственными органами и международными соглашениями. В отличие от других сред передачи, которые при необходимости можно наращивать, окружающее пространство, по сути, ограниченно. Если в эфире тесно, то можно только мешать друг другу. Степень помехоустойчивости окружающего пространства зависит от частоты. На низких частотах велики помехи от разрядов молний и электротранспорта, на высоких – от дождя, тумана, состояния ионосферы. Самая большая сложность при установке – получение лицензии на использование выделенной полосы частот. И все-таки популярность этого способа передачи растет. К началу ХХI в. практически вся планета опутана сотами беспроводной связи.

И тем не менее, сегодня в локальных сетях различных топологий чаще применяются кабельные среды передачи данных. Сравнительные их характеристики представлены в табл. 5.3.

Таблица 5.3

Сравнительные характеристики кабельных сред передачи данных

Характе-ри­стика Тип среды передачи
“витая пара” коаксиал тонкий коаксиал толстый оптоволокон­ный кабель
Примене-ние в сетях топологий Кольцо, звезда, шина, дерево Шина, дерево, реже - кольцо Шина, дерево Кольцо, звезда
Максим. число узлов сети До 255 До 1024 2500 и более От 2 до 8
Максим. длина, км 10 ÷ 25 50 ÷ 80 2 ÷ 10
Максим. пропу­скная спо­собность (скорость) Мбит/с 1 ÷ 10 10 ÷ 50 До 500 500 на 10 км 1500 на 8 км до 5*10 3 на 5 км
Основные преиму-ще­ства Низкая стоимость, можно ис­пользо­вать существую­щие теле­фонные ли­нии Низкая цена, простота установки Широкое вещание, высокая помехозащи-щен­ность Смешанный трафик, абсо­лютная защита от шумов, за­щита от несанк­ционированного доступа
Основные недостат-ки Узость по­лосы, слабая защита от помех и не­санкциони­рован­ного доступа. Не­обходима механиче­ская защита, сложность поиска раз­рывов и за­землений Стабильная работа при нагрузке до 40 %, тре­бует за­щиты от механичес-ких повре­ждений и несанкцио-нирован­ного дос­тупа Повышенные цена и за­траты на про­кладку. Необ­ходимы разно-частотные мо­демы для око­нечных сис­тем Высокая цена, для установки необходим ква­лифицирован­ный персонал. Коммерчески пока недоступен

Рассмотрим некоторые технические параметры передачи по кабельным линиям связи.

Локальные сети строятся, в основном, с использованием кабельных линий связи. Любая кабельная линия описывается следующими параметрами передачи: коэффициентом распространения сигнала (iw) и волновым сопротивлением Z в (iw). По этим параметрам можно определить ток и напряжение в любой точке кабельной линии. Параметры передачи связаны с первичными параметрами линии – активным сопротивлением R, индуктивностью L, емкостью С и проводимостью изоляции G следующими соотношениями:

.

Сигналы, передаваемые по линиям, имеют широкий частотный спектр, поэтому учет частотной зависимости весьма актуален. Частотные зависимости сопротивления R и индуктивности L кабеля определяются в основном процессами перераспределения тока в токопроводящих жилах из-за поверхностного эффекта и эффекта близости (рис. 5.2).

Поверхностный эффект заключается в перераспределении тока в проводнике при взаимодействии основного тока с вихревыми токами, наведенными основным через внутреннее магнитное поле. В результате поверхностного эффекта возрастает плотность тока в поверхностных слоях проводника. Так, в медном проводнике на частоте 100 кГц толщина поверхностного слоя, в котором концентрируется ток, составляет 208 мкм, а на 1 МГц – 66 мкм. Таким образом, уже на частотах в несколько десятков килогерц толщина токопроводящего слоя много меньше диаметра проводника. Поверхностный эффект приводит к росту активного сопротивления и уменьшению индуктивности с ростом частоты.

Эффектом близости называется перераспределение тока из-за взаимодействия тока, протекающего по проводнику, с вихревыми токами, наводимыми внешним магнитным полем. При передаче сигнала по кабелю в двух проводниках, образующих замкнутую цепь, проходят токи противоположных направлений. Влияние полей обоих проводников приводит к увеличению плотностей токов на поверхностях проводников, обращенных друг к другу. В коаксиальной паре, вследствие эффекта близости в центральной жиле, ток концентрируется на внешней поверхности аналогично действию поверхностного эффекта, а во внешнем проводнике ток концентрируется на внутренней поверхности, как показано на эпюрах

Рис.5.2. Перераспределение тока из-за поверхностного эффекта и

эффекта близости

Обратите внимание! Внешние поля вызывают появление токов, протекающих в основном по наружной поверхности внешнего проводника. Вследствие эффекта близости с ростом частоты ω пути сигнальных и мешающих токов во внешнем проводнике разделяются – происходит самоэкранирование кабеля (этот момент изображен на эпюрах). Это и приводит к возрастанию защищенности коаксиальной пары от внешних помех с увеличением частоты передаваемого сигнала. Отсюда и бытовое название внешнего проводника коаксиальной пары – экран. Правда, низкочастотные поля линий электропередач и электрического транспорта экранируются плохо.

Влияние эффекта близости на активное сопротивление и индуктивность проводников кабельной пары аналогично действию поверхностного эффекта: с ростом w R увеличивается, L – уменьшается.

При увеличении частоты сигнала возрастает и комплексное сопротивление Z n поверхностного слоя, где концентрируется протекающий по проводнику ток. С учетом этого обстоятельства параметры передачи линии будут определяться как


;


;


,

где ρ 1,2 и μ 1,2 – значения удельного сопротивления и магнитной проницаемости проводников пары, соответственно.

Из последних формул следует, что волновое сопротивление кабеля на низких частотах увеличивается по модулю. С увеличением частоты волновое сопротивление становится чисто активным и постоянным ). Затухание кабеля пропорционально корню квадратному из частоты. Все рассмотренное относится ко всем электрическим кабелям.

Перейдем к рассмотрению свойств каждой среды передачи.

Кабель “витая пара” . Цифровые линии передачи данных организуются по кабелям “витая пара” на местных, межцеховых и межгородских сетях. На коротких расстояниях в единицы километров применяются многопарные телефонные кабели типа Т с диаметром жил 0,4-0,7 мм, изоляцией в виде пористой бумажной массы или спиралью намотанной бумажной ленты, парной скруткой жил. В одном кабеле типа Т число пар может достигать 1200 (для городской прокладки между жилыми домами и АТС). Могут также применяться многопарные кабели марки ТП с полиэтиленовой изоляцией. Для малонагруженных линий применяются кабели марки КСПП с диаметром жил 0,9 мм упрощенной конструкции, с малым числом жил (до четырех четверок) в полиэтиленовой изоляции. На средних дистанциях до 10 км могут использоваться одночетверочные кабели марки ЗКП с полиэтиленовой изоляцией. Скрутка четырех жил (а не двух) повышает помехозащищенность.

В кабелях основным видом помех являются переходные влияния между сигналами, передаваемыми по различным парам проводников одного кабеля. Предельная длина участка регенерации для цифровых линий определяется из условия обеспечения минимально допустимой величины защищенности от переходных помех. Взаимное влияние оценивается величиной переходного затухания на ближнем А 0 и дальнем концах участка:
;


,

где индекс 1 относится к влияющей цепи, а индекс 2 – к цепи, подверженной влиянию.

Схема взаимного влияния между линиями в кабеле “витая пара” выглядит так (рис. 5.3):

Рис. 5.3. Взаимное влияние линий в кабеле

Величина переходного влияния в кабелях “витая пара” зависит не только от длины участка, но и от частоты передаваемого сигнала. Эта зависимость также носит характер возрастания влияния с ростом частоты.

Предельные нижние значения переходного затухания (в децибелах) для кабелей разных категорий приведены в табл.5.4.

Таблица 5.4

Границы переходного затухания в кабелях различных категорий, дБ

Частота, МГц Категория
10,0 11,5 7,5 7,0
20,0 - 11,0 10,3
100,0 - - 24,0

Коаксиальные кабели. Линии передачи данных более высокого качества и технических характеристик организуются по коаксиальным кабелям. Наибольшее распространение получили кабели марок КМ – 4, МКТ – 4 и КМ– 8/6. Магистральный коаксиальный кабель КМ – 4 содержит 4 коаксиальные пары диаметром 2,6/9,4 мм (первое число – диаметр центральной жилы, второе – внутренний диаметр внешнего проводника) и 5 “витых” четверок жил диаметром 0,9 мм. Изоляция коаксиальных пар выполнена в виде полиэтиленовых шайб. Малогабаритный коаксиальный кабель МКТ – 4 имеет 4 коаксиальные пары диаметром 1,2/4,6 мм и пять “витых пар” с диаметром жил 0,7 мм. Изоляция в коаксиальных парах – воздушно-полиэтиленовая. Комбинированный коаксиальный кабель КМ – 8/6 содержит 8 коаксиальных пар 2,6 / 9,4 мм, 6 коаксиальных пар 1,2/4,6 мм, а также одну четверку, 8 “витых пар” и 6 отдельных жил диаметром 0,9 мм.

Поскольку защищенность коаксиальной пары от внешних помех увеличивается пропорционально корню квадратному из частоты, переходное затухание в таких кабелях нормируется на нижней частоте используемого диапазона. Так, для пары 2,6/9,4 мм переходное затухание составляет 128 дБ на частоте 300 кГц для строительной длины 600 м. Это позволяет применять однокабельную систему организации линии передачи данных.

Волоконно-оптические кабели. Эти кабели являются наиболее перспективными для линий передачи сигналов. Основные достоинства оптического волокна – низкое затухание, слабые (практически нулевые) взаимные влияния между сигналами, передаваемыми по различным волокнам одного кабеля, малая чувствительность к внешним электромагнитным полям, небольшие размеры, малый радиус допустимого изгиба, большая ширина оптического диапазона волн, дешевое сырье для изготовления волокон.

Волоконный кабель содержит одно или много оптических волокон круглого сечения, изготовленных из кварцевого стекла (или пластмассы) с переменным по сечению волокна коэффициентом преломления. Потери на затухание в кварцевом стекле минимальны в диапазоне длин волн λ = 1,0 ÷ 1,8 мкм. Вне этого интервала возрастают потери на ультрафиолетовое слева и инфракрасное справа поглощение. В спектре пропускания кварцевого стекла максимумы поглощения приходятся на значения λ = 0,95; 1,24 и 1,39 мкм. Поэтому затухание в волокне менее 1 дБ/км принципиально может быть достигнуто лишь в нескольких дискретных областях (λ = 0,8; 1,2; 1,3 и

В реальных волокнах источником потерь, кроме чистоты стекла. являются вариации толщины волокна и плотности материала, изгибы, нарушение профиля показателя преломления, качество сращивания участков или их разъемных соединений. Все это приводит к возрастанию минимального затухания кабеля до 2 ÷ 5 дБ/км.

Оптическое волокно имеет сердцевину и оболочку. Для удержания света в волокне показатель преломления сердцевины n c должен быть выше, чем у оболочки n.

В зависимости от числа типов электромагнитных волн (мод), которые могут распространяться в волокне, различают одномодовые и многомодовые световоды (рис.5.4).

В настоящее время существует три основных типа световодов, отличающихся законом распределения показателя преломления по сечению и числом распространяющихся мод: многомодовое волокно со ступенчатым изменением показателя преломления (рис. 5.4а) , многомодовое градиентное волокно с плавным изменением показателя преломления (рис. 5.4б) и одномодовое волокно со ступенчатым изменением показателя преломления (рис. 5.4в) .

В многомодовых волокнах со ступенчатым профилем диаметр сердцевины d = 50 ÷ 300 мкм, скорости распространения различных мод не выравниваются, что приводит к дисперсии до 20 нс/км. В градиентных волокнах показатель преломления изменяется по параболе, что обеспечивает выравнивание оптических длин путей различных распространяющихся мод и, как следствие, резкое уменьшение межмодовой дисперсии до

0,2 ÷ 1,0 нс/км. Полное отсутствие дисперсии может обеспечить гиперболический профиль изменения показателя преломления, но его трудно выдержать при изготовлении волокна. Одномодовый режим распространения обеспечивается при поперечных размерах сердечника волокна, соизмеримых с длиной волны, и при малых значениях разности показателей преломления

сердцевины и оболочки. Так при n c = 1,5; Δ = n c - n = 0,002 и λ = 0,85 мкм диаметр одномодового волокна составляет d = 6,8 мкм. Из-за столь малых размеров сердечника и малой величины Δ изготовление таких волокон технически достаточно сложно. Поэтому первыми были освоены в изготовле-

нии многомодовые волокна.

Рис.5.4. Типы световодов

На различных участках сетей могут использоваться волоконно-оптические кабели с различными параметрами. На участках протяженностью порядка

10 км и скоростью передачи 2-140 Мбит/с можно применить волокно с затуханием до 10 дБ/км и дисперсией в несколько нс/км. При значительно большей протяженности линии связи потери в волокне не должны превышать 3-5 дБ/км, что определяет отстояние соседних пунктов регенерации на 8-10 км. Дисперсия импульсов в таких линиях должна быть ниже 1 нс/км, что потребует применения одномодового или градиентного волокна с очень жестко заданным профилем показателя преломления.

Вопросы для самопроверки:

1. Обоснуйте свой выбор между “витой парой” категории 3 (или 4) и тонким коаксиальным кабелем для передачи данных от автоматизированной технологической линии бумагоделательной машины до ВЦ комбината.

2. Сравните взаимовлияние каналов в кабеле с несколькими витыми парами и в кабеле с несколькими оптическими волокнами.

3. Из чего складывается стоимость среды передачи кабельных сред и окружающего пространства?

4. Какова физическая природа экранирующего эффекта внешнего проводника коаксиальной пары?

5. Чем объясняется перспективность применения оптоволоконного кабеля в линиях передачи данных информационных сетей?

6. В чем отличия многомодового волокна от одномодового?

7. Как зависит затухание сигнала в кабеле “витая пара” от частоты?

8. Чем следует руководствоваться при проектировании узлов усилителей мощности (регенерации сигнала) для различных физических сред передачи?

Средой передачи информации называются те линии связи (или каналы связи), по которым производится обмен информацией между компьютерами. В подавляющем большинстве компьютерных сетей (особенно локальных) используются проводные или кабельные каналы связи, хотя существуют и беспроводные сети, которые сейчас находят все более широкое применение, особенно в портативных компьютерах.

Существует 4 вида сред передачи данных:

· Кабели на основе витых пар

· Коаксиальные кабели

· Оптоволоконные кабели

· Бескабельные каналы связи

Витые пары проводов используются в дешевых и сегодня, пожалуй, самых популярных кабелях. Кабель на основе витых пар представляет собой несколько пар скрученных попарно изолированных медных проводов в единой диэлектрической (пластиковой) оболочке. Он довольно гибкий и удобный для прокладки. Скручивание проводов позволяет свести к минимуму индуктивные наводки кабелей друг на друга и снизить влияние переходных процессов.

Обычно в кабель входит две (рис. 4,1) или четыре витые пары.

Рис. 4,1.

Неэкранированные витые пары характеризуются слабой защищенностью от внешних электромагнитных помех, а также от подслушивания, которое может осуществляться с целью, например, промышленного шпионажа. Причем перехват передаваемой по сети информации возможен как с помощью контактного метода (например, посредством двух иголок, воткнутых в кабель), так и с помощью бесконтактного метода, сводящегося к радиоперехвату излучаемых кабелем электромагнитных полей. Причем действие помех и величина излучения во вне увеличивается с ростом длины кабеля. Для устранения этих недостатков применяется экранирование кабелей.

В случае экранированной витой пары STP каждая из витых пар помещается в металлическую оплетку-экран для уменьшения излучений кабеля, защиты от внешних электромагнитных помех и снижения взаимного влияния пар проводов друг на друга (crosstalk - перекрестные наводки). Для того чтобы экран защищал от помех, он должен быть обязательно заземлен. Естественно, экранированная витая пара заметно дороже, чем неэкранированная. Ее использование требует специальных экранированных разъемов. Поэтому встречается она значительно реже, чем неэкранированная витая пара.

Основные достоинства неэкранированных витых пар - простота монтажа разъемов на концах кабеля, а также ремонта любых повреждений по сравнению с другими типами кабеля. Все остальные характеристики у них хуже, чем у других кабелей. Например, при заданной скорости передачи затухание сигнала (уменьшение его уровня по мере прохождения по кабелю) у них больше, чем у коаксиальных кабелей. Если учесть еще низкую помехозащищенность, то понятно, почему линии связи на основе витых пар, как правило, довольно короткие (обычно в пределах 100 метров). В настоящее время витая пара используется для передачи информации на скоростях до 1000 Мбит/с, хотя технические проблемы, возникающие при таких скоростях, крайне сложны.

Коаксиальный кабель представляет собой электрический кабель, состоящий из центрального медного провода и металлической оплетки (экрана), разделенных между собой слоем диэлектрика (внутренней изоляции) и помещенных в общую внешнюю оболочку (рис. 4,2).


Рисунок 4,2

Коаксиальный кабель до недавнего времени был очень популярен, что связано с его высокой помехозащищенностью (благодаря металлической оплетке), более широкими, чем в случае витой пары, полосами пропускания (свыше 1ГГц), а также большими допустимыми расстояниями передачи (до километра). К нему труднее механически подключиться для несанкционированного прослушивания сети, он дает также заметно меньше электромагнитных излучений вовне. Однако монтаж и ремонт коаксиального кабеля существенно сложнее, чем витой пары, а стоимость его выше (он дороже примерно в 1,5 - 3 раза). Сложнее и установка разъемов на концах кабеля. Сейчас его применяют реже, чем витую пару. Стандарт EIA/TIA-568 включает в себя только один тип коаксиального кабеля, применяемый в сети Ethernet.

Основное применение коаксиальный кабель находит в сетях с топологией типа шина. При этом на концах кабеля обязательно должны устанавливаться терминаторы для предотвращения внутренних отражений сигнала, причем один (и только один!) из терминаторов должен быть заземлен. Без заземления металлическая оплетка не защищает сеть от внешних электромагнитных помех и не снижает излучение передаваемой по сети информации во внешнюю среду. Но при заземлении оплетки в двух или более точках из строя может выйти не только сетевое оборудование, но и компьютеры, подключенные к сети. Терминаторы должны быть обязательно согласованы с кабелем, необходимо, чтобы их сопротивление равнялось волновому сопротивлению кабеля. Например, если используется 50-омный кабель, для него подходят только 50-омные терминаторы.

Реже коаксиальные кабели применяются в сетях с топологией звезда (например, пассивная звезда в сети Arcnet). В этом случае проблема согласования существенно упрощается, так как внешних терминаторов на свободных концах не требуется.

Существует два основных типа коаксиального кабеля:

· тонкий (thin) кабель, имеющий диаметр около 0,5 см, более гибкий;

· толстый (thick) кабель, диаметром около 1 см, значительно более жесткий. Он представляет собой классический вариант коаксиального кабеля, который уже почти полностью вытеснен современным тонким кабелем.

Тонкий кабель используется для передачи на меньшие расстояния, чем толстый, поскольку сигнал в нем затухает сильнее. Зато с тонким кабелем гораздо удобнее работать: его можно оперативно проложить к каждому компьютеру, а толстый требует жесткой фиксации на стене помещения. Подключение к тонкому кабелю (с помощью разъемов BNC байонетного типа) проще и не требует дополнительного оборудования. А для подключения к толстому кабелю надо использовать специальные довольно дорогие устройства, прокалывающие его оболочки и устанавливающие контакт как с центральной жилой, так и с экраном. Толстый кабель примерно вдвое дороже, чем тонкий, поэтому тонкий кабель применяется гораздо чаще.

Как и в случае витых пар, важным параметром коаксиального кабеля является тип его внешней оболочки. Точно так же в данном случае применяются как non-plenum (PVC), так и plenum кабели. Естественно, тефлоновый кабель дороже поливинилхлоридного. Обычно тип оболочки можно отличить по окраске (например, для PVC кабеля фирма Belden использует желтый цвет, а для тефлонового - оранжевый).

Типичные величины задержки распространения сигнала в коаксиальном кабеле составляют для тонкого кабеля около 5 нс/м, а для толстого - около 4,5 нс/м.

Существуют варианты коаксиального кабеля с двойным экраном (один экран расположен внутри другого и отделен от него дополнительным слоем изоляции). Такие кабели имеют лучшую помехозащищенность и защиту от прослушивания, но они немного дороже обычных.

В настоящее время считается, что коаксиальный кабель устарел, в большинстве случаев его вполне может заменить витая пара или оптоволоконный кабель. И новые стандарты на кабельные системы уже не включают его в перечень типов кабелей.

Оптоволоконный (он же волоконно-оптический) кабель - это принципиально иной тип кабеля по сравнению с рассмотренными двумя типами электрического или медного кабеля. Информация по нему передается не электрическим сигналом, а световым. Главный его элемент - это прозрачное стекловолокно, по которому свет проходит на огромные расстояния (до десятков километров) с незначительным ослаблением.


Рисунок. 4,3.

Структура оптоволоконного кабеля очень проста и похожа на структуру коаксиального электрического кабеля (рис 4,3). Только вместо центрального медного провода здесь используется тонкое (диаметром около 1 - 10 мкм) стекловолокно, а вместо внутренней изоляции - стеклянная или пластиковая оболочка, не позволяющая свету выходить за пределы стекловолокна. В данном случае речь идет о режиме так называемого полного внутреннего отражения света от границы двух веществ с разными коэффициентами преломления (у стеклянной оболочки коэффициент преломления значительно ниже, чем у центрального волокна). Металлическая оплетка кабеля обычно отсутствует, так как экранирование от внешних электромагнитных помех здесь не требуется. Однако иногда ее все-таки применяют для механической защиты от окружающей среды (такой кабель иногда называют броневым, он может объединять под одной оболочкой несколько оптоволоконных кабелей).

Оптоволоконный кабель обладает исключительными характеристиками по помехозащищенности и секретности передаваемой информации. Никакие внешние электромагнитные помехи в принципе не способны исказить световой сигнал, а сам сигнал не порождает внешних электромагнитных излучений. Подключиться к этому типу кабеля для несанкционированного прослушивания сети практически невозможно, так как при этом нарушается целостность кабеля. Теоретически возможная полоса пропускания такого кабеля достигает величины 1012 Гц, то есть 1000 ГГц, что несравнимо выше, чем у электрических кабелей. Стоимость оптоволоконного кабеля постоянно снижается и сейчас примерно равна стоимости тонкого коаксиального кабеля.

Однако оптоволоконный кабель имеет и некоторые недостатки.

Самый главный из них - высокая сложность монтажа (при установке разъемов необходима микронная точность, от точности скола стекловолокна и степени его полировки сильно зависит затухание в разъеме). Для установки разъемов применяют сварку или склеивание с помощью специального геля, имеющего такой же коэффициент преломления света, что и стекловолокно. В любом случае для этого нужна высокая квалификация персонала и специальные инструменты. Поэтому чаще всего оптоволоконный кабель продается в виде заранее нарезанных кусков разной длины, на обоих концах которых уже установлены разъемы нужного типа. Следует помнить, что некачественная установка разъема резко снижает допустимую длину кабеля, определяемую затуханием.

Также надо помнить, что использование оптоволоконного кабеля требует специальных оптических приемников и передатчиков, преобразующих световые сигналы в электрические и обратно, что порой существенно увеличивает стоимость сети в целом.

Оптоволоконные кабели допускают разветвление сигналов (для этого производятся специальные пассивныеразветвители (couplers) на 2--8 каналов), но, как правило, их используют для передачи данных только в одном направлении между одним передатчиком и одним приемником. Ведь любое разветвление неизбежно сильно ослабляет световой сигнал, и если разветвлений будет много, то свет может просто не дойти до конца сети. Кроме того, в разветвителе есть и внутренние потери, так что суммарная мощность сигнала на выходе меньше входной мощности.

Оптоволоконный кабель менее прочен и гибок, чем электрический. Типичная величина допустимого радиуса изгиба составляет около 10 - 20 см, при меньших радиусах изгиба центральное волокно может сломаться. Плохо переносит кабель и механическое растяжение, а также раздавливающие воздействия.

Чувствителен оптоволоконный кабель и к ионизирующим излучениям, из-за которых снижается прозрачность стекловолокна, то есть увеличивается затухание сигнала. Резкие перепады температуры также негативно сказываются на нем, стекловолокно может треснуть.

Применяют оптоволоконный кабель только в сетях с топологией звезда и кольцо. Никаких проблем согласования и заземления в данном случае не существует. Кабель обеспечивает идеальную гальваническую развязку компьютеров сети. В будущем этот тип кабеля, вероятно, вытеснит электрические кабели или, во всяком случае, сильно потеснит их. Запасы меди на планете истощаются, а сырья для производства стекла более чем достаточно.

Кроме кабельных каналов в компьютерных сетях иногда используются также бескабельные каналы. Их главное преимущество состоит в том, что не требуется никакой прокладки проводов (не надо делать отверстий в стенах, закреплять кабель в трубах и желобах, прокладывать его под фальшполами, над подвесными потолками или в вентиляционных шахтах, искать и устранять повреждения). К тому же компьютеры сети можно легко перемещать в пределах комнаты или здания, так как они ни к чему не привязаны.

Радиоканал использует передачу информации по радиоволнам, поэтому теоретически он может обеспечить связь на многие десятки, сотни и даже тысячи километров. Скорость передачи достигает десятков мегабит в секунду (здесь многое зависит от выбранной длины волны и способа кодирования).

Особенность радиоканала состоит в том, что сигнал свободно излучается в эфир, он не замкнут в кабель, поэтому возникают проблемы совместимости с другими источниками радиоволн (радио- и телевещательными станциями, радарами, радиолюбительскими и профессиональными передатчиками и т.д.). В радиоканале используется передача в узком диапазоне частот и модуляция информационным сигналом сигнала несущей частоты.

Главным недостатком радиоканала является его плохая защита от прослушивания, так как радиоволны распространяются неконтролируемо. Другой большой недостаток радиоканала - слабая помехозащищенность.

Для локальных беспроводных сетей (WLAN - Wireless LAN) в настоящее время применяются подключения порадиоканалу на небольших расстояниях (обычно до 100 метров) и в пределах прямой видимости. Чаще всего используются два частотных диапазона - 2,4 ГГц и 5 ГГц. Скорость передачи - до 54 Мбит/с. Распространен вариант со скоростью 11 Мбит/с.

Сети WLAN позволяют устанавливать беспроводные сетевые соединения на ограниченной территории (обычно внутри офисного или университетского здания или в таких общественных местах, как аэропорты). Они могут использоваться во временных офисах или в других местах, где прокладка кабелей неосуществима, а также в качестве дополнения к имеющейся проводной локальной сети, призванного обеспечить пользователям возможность работать перемещаясь по зданию.

Популярная технология Wi-Fi (Wireless Fidelity) позволяет организовать связь между компьютерами числом от 2 до 15 с помощью концентратора (называемого точкой доступа, Access Point, AP), или нескольких концентраторов, если компьютеров от 10 до 50. Кроме того, эта технология дает возможность связать две локальные сети на расстоянии до 25 километров с помощью мощных беспроводных мостов. Для примера на рис. 4,4 показано объединение компьютеров с помощью одной точки доступа. Важно, что многие мобильные компьютеры (ноутбуки) уже имеют встроенный контроллер Wi-Fi, что существенно упрощает их подключение к беспроводной сети.


Рисунок 4,4

Радиоканал широко применяется в глобальных сетях как для наземной, так и для спутниковой связи. В этом применении у радиоканала нет конкурентов, так как радиоволны могут дойти до любой точки земного шара.

Если говорить о возможных топологиях, то наиболее естественно все беспроводные каналы связи подходят для топологии типа шина, в которой информация передается одновременно всем абонентам. Но при использовании узконаправленной передачи и/или частотного разделения по каналам можно реализовать любые топологии (кольцо, звезда, комбинированные топологии) как на радиоканале, так и на инфракрасном канале.

Загрузка...

Реклама