chok-chok-shop.ru

Функция двух переменных.Область определения и линии уровня. Лекции функции нескольких переменных Функции многих независимых переменных

V. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ

ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

Понятие функции нескольких переменных

Ранее была рассмотрена функция одной независимой переменной. Однако, решая конкретные практические задачи, исследователь, в общем случае, сталкивается с такими явлениями, которые зависят сразу от нескольких независимых переменных величин. В качестве самых простых примеров этого можно привести необходимость вычисления площади прямоугольника либо объема параллелепипеда. Действительно, площадь прямоугольника определяется двумя независимыми друг от друга величинами – длинами сторон прямоугольника и :

Объем параллелепипеда определяется уже тремя независимыми величинами – длинами его ребер , , :

Можно привести и более сложные примеры. Иначе говоря, число независимых переменных величин может быть каким угодно. В этих случаях говорят, что искомая величина является функцией двух, трех или большего числа переменных.

Часто пытаются исключить второстепенные переменные и оставить только одну, основную, то есть пытаются получить функцию одной переменной. Но это не всегда возможно. Упрощение выражения дает часто функцию двух или трех переменных. Сразу же необходимо отметить, что исследование функций многих переменных имеет подобные методы. Поэтому для простоты будем изучать функции двух переменных и полученные результаты при необходимости обобщать затем на произвольный случай.

В случае одной переменной функция являлась оператором, который каждому элементу из множества ставил в соответствие один и только один элемент из множества .

Каким же образом определяется аргумент функции двух переменных? Так как мы исследуем функции действительных аргументов, то величина такой функции зависит от пары двух действительных чисел. С точки зрения теории множеств это не что иное, как произведение двух множеств и , к которым принадлежат переменные и .

Определение 5.1.1 . Пусть , а , тогда произведение дает новое множество , каждый элемент которого содержит пару чисел .



Из определения 5.1.1 следует, что, зная множество значений и функции двух переменных, можно найти область ее определения. Очевидно, это будут все возможные комбинации и .

Произведение двух действительных числовых множеств и образует множество в пространстве . Графическое представление этого произведения – это плоскость или часть этой плоскости.

Определение 5.1.2 . Функцией двух переменных называется соотношение, которое каждой паре чисел ставит в соответствие одно и только одно число .

Если имеется функция переменных, то ее областью определения будет пространство или его часть. Такое множество уже графически не представимо.

Функции двух переменных, так же как и функции одной переменной, можно представить с помощью таблицы, графика или аналитического выражения. Табличный способ наименее удобен, однако, при экспериментальном определении значения функции он может оказаться единственным. Более информативны графическое и аналитическое задание функции. При этом последний способ наиболее удобен, так как дает возможность провести полное исследование данного понятия.

Для графического представления функции двух переменных рисуют трехмерную систему координат, например, прямоугольную декартовую. На плоскости изображают область определения данной функции. В каждой точке области определения восстанавливается перпендикуляр, который имеет длину, равную значению функции в этой точке. Объединяя все полученные точки, получают некоторую поверхность (рис. 5.1.1). Таким образом, графически функция двух переменных – это некоторая поверхность. Для изображения функций большего числа переменных графический способ уже не применим.

При аналитическом задании функции двух переменных записывается формула , при помощи которой по заданным значениям независимых переменных отыскивается значение функции. Увеличение числа переменных при аналитическом задании функции проблем не создает ().

При исследовании функции двух или нескольких переменных возникают те же понятия, что и для функции одной переменной: предел, непрерывность, приращения, производная.

Рассмотрим вначале сечения поверхности плоскостями и (рис. 5.1.2).

Так как на линии константой является , то на ней меняется лишь в зависимости от изменения . Если в точке задать приращение , то произойдет перемещение в точку . Разность аппликат в этих точках будет равна изменению значения функции , которое не будет зависеть от переменной .

Таким образом, давая приращение , получаем приращение , которое называется частным приращением по и обозначается .

Аналогично определяется частное приращение по : .

Давая одновременно приращения переменным и , получаем полное приращение функции: . При этом необходимо иметь в виду, что .

Введем теперь понятие окрестности точки на плоскости.

Определение 5.1.3 . -окрестностью точки с радиусом называется множество всех точек , которые удовлетворяют неравенству , или, иначе говоря, множество всех точек, которые лежат внутри круга радиуса с центром в точке (рис. 5.1.3).

На основании определения -окрестности можно ввести понятие предела функции двух переменных. Пусть функция определена в некоторой области (рис. 5.1.3). Возьмем в этой области некоторую точку . к точке;

3) определена во всех точках, но .

При изучении многих закономерностей в естествознании и экономике приходится встречаться с функциями от двух (и более) независимых переменных.

Определение (для функции двух переменных). Пусть X , Y и Z - множества. Если каждой паре (x , y ) элементов из множеств соответственно X и Y в силу некоторого закона f ставится в соответствие один и только один элемент z из множества Z , то говорят, что задана функция двух переменных z = f (x , y ) .

В общем случае область определения функции двух переменных геометрически может быть представлена некоторым множеством точек (x ; y ) плоскости xOy .

Основные определения, относящиеся к функциям нескольких переменных, являются обобщением соответствующих определений для функции одной переменной .

Множество D называется областью определения функции z , а множество E множеством её значений . Переменные x и y по отношению к функции z называются её аргументами. Переменная z называется зависимой переменной.

Частным значениям аргументов

соответствует частное значение функции

Область определения функции нескольких переменных

Если функция нескольких переменных (например, двух переменных) задана формулой z = f (x , y ) , то областью её определения является множество всех таких точек плоскости x0y , для которых выражение f (x , y ) имеет смысл и принимает действительные значения . Общие правила для области определения функции нескольких переменных выводятся из общих правил для области определения функции одной переменной . Отличие в том, что для функции двух переменных областью определения является некоторое множество точек плоскости, а не прямой, как для функции одной переменной. Для функции трёх переменных областью определения является соответствующее множество точек трёхмерного пространства, а для функции n переменных - соответствующее множество точек абстрактного n -мерного пространства.

Область определения функции двух переменных с корнем n -й степени

В случае, когда функция двух переменных задана формулой и n - натуральное число :

если n - чётное число, то областью определения функции является множество точек плоскости, соответствующих всем значениями подкоренного выражения, которые больше или равны нулю, то есть

если n - нечётное число, то областью определения функции является множество любых значений , то есть вся плоскость x0y .

Область определения степенной функции двух переменных с целым показателем степени

:

если a - положительное, то областью определения функции является вся плоскость x0y ;

если a - отрицательное, то областью определения функции является множество значений , отличных от нуля: .

Область определения степенной функции двух переменных с дробным показателем степени

В случае, когда функция задана формулой :

если - положительное, то областью определения функции является множество тех точек плоскости, в которых принимает значения большие или равное нулю: ;

если - отрицательное, то областью определения функции является множество тех точек плоскости, в которых принимает значения, большие нуля: .

Область определения логарифмической функции двух переменных

Логарифмическая функция двух переменных определена при условии, если её аргумент положителен, то есть, областью её определения является множество тех точек плоскости, в которых принимает значения, большие нуля: .

Область определения тригонометрических функций двух переменных

Область определения функции - вся плоскость x0y .

Область определения функции - вся плоскость x0y .

Область определения функции - вся плоскость x0y

Область определения функции - вся плоскость x0y , кроме пар чисел, для которых принимает значения .

Область определения обратных тригонометрических функций двух переменных

Область определения функции .

Область определения функции - множество таких точек плоскости, для которых .

Область определения функции - вся плоскость x0y .

Область определения функции - вся плоскость x0y .

Область определения дроби как функции двух переменных

Если функция задана формулой , то областью определения функции являются все точки плоскости, в которых .

Область определения линейной функции двух переменных

Если функция задана формулой вида z = ax + by + c , то область определения функции - вся плоскость x0y .

Пример 1.

Решение. По правилам для области определения составляем двойное неравенство

Умножаем всё неравенство на и получаем

Полученное выражение и задаёт область определения данной функции двух переменных.

Пример 2. Найти область определения функции двух переменных .

Скачать с Depositfiles

Лекции 1-4

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ.

Контрольные вопросы.

    Частное и полное приращение функции нескольких переменных (ФНП).

    Предел функции нескольких переменных. Свойства пределов ФНП.

    Непрерывность ФНП. Свойства непрерывных функций.

    Частные производные первого порядка.

Определение : если каждой рассматриваемой совокупности значений переменных соответствует определенное значение переменной w, то будем называть w функцией независимых переменных :

(1)

Определение : областью определения D ( f ) функции (1) называется совокупность таких наборов чисел
, при которых определена функция (1).

Область D ( f ) может быть открытой или замкнутой. Например для функции:

D (f ) будут все точки пространства, для которых выполняется неравенство (замкнутый шар), а для функции (открытый шар).

В дальнейшем мы будем рассматривать в основном функции двух переменных, т.к. во-первых, принципиального различия между двумя и большим числом переменных нет, увеличение числа переменных ведет лишь к громоздкости выкладок. Во-вторых, случай двух переменных допускает наглядную геометрическую интерпретацию.

Геометрическим изображением функции двух переменных
является некоторая поверхность, которая может быть задана явно или неявно. Например: a )
— явное задание (параболоид вращения), б)
— неявное задание (сфера).

При построении графика функции часто пользуются методом сечений .

Пример . Построить график функции .
Воспользуемся методом сечений.

в плоскости
– парабола.

в плоскости
–парабола.

в плоскости
– окружность.

Искомая поверхность – параболоид вращения.

Расстоянием между двумя произвольными точками
и
(евклидова) пространства
называется число

Множество точек называется открытым кругом радиуса с центром в точке , – окружностью радиуса с центром в точке .

Открытый круг радиуса с центром в точке называется -окрестностью точки .

О

пределение . Точка называется внутренней точкой множества , если существует -окрестность
точки , целиком принадлежащая множеству (т.е.
).

Определение . Точка называется граничной точкой множества , если в любой ее -окрестности содержатся точки, как принадлежащие множеству , так и не принадлежащие ему.



Граничная точка множества может как принадлежать этому множеству, так и не принадлежать ему.

Определение . Множество называется открытым , если все его точки – внутренние.

Определение . Множество называется замкнутым , если оно содержит все свои граничные точки. Множество всех граничных точек множества называется его границей (и часто обозначается символом
). Заметим, что множество
является замкнутым и называется
замыканием множества .

Пример . Если , то . При этом .

Частное и полное приращение функции.

Если одна независимая переменная (например, х ) получает приращение х , а другая переменная не меняется, то функция получает приращение:

которое называется частным приращением функции по аргументу х .

Если же все переменные получают приращения, то функция получает полное приращение:

Например, для функции
будем иметь:

Предел функции нескольких переменных.

Определение . Будем говорить, что последовательность точек
сходится при
к точке
, если при .

В этом случае точку
называют пределом указанной последовательности и пишут:
при
.

Легко показать, что тогда и только тогда, когда одновременно
,
(т.е. сходимость последовательности точек пространства эквивалентна покоординатной сходимости ).

Определение . Число называют пределом функции
при
, если для

такое, что
, как только.

В этом случае пишут
или
при
.


При кажущейся полной аналогии понятий предела функций одной и двух переменных существует глубокое различие между ними. В случае функции одной переменной для существования предела в точке необходимо и достаточно равенство лишь двух чисел – пределов по двум направлениям: справа и слева от предельной точки . Для функции двух переменных стремление к предельной точке
на плоскости может происходить по бесконечному числу направлений (и необязательно по прямой), и потому требование существования предела у функции двух (или нескольких) переменных «жестче» по сравнению с функцией одной переменной.

Пример . Найти
.

Пусть стремление к предельной точке
происходит по прямой
. Тогда
.

Предел, очевидно, не существует, так как число
зависит от .

Свойства пределов ФНП :

Если существуют и
, то: , Аналогично определяется частная производная по и вводятся ее обозначения.

Легко видеть, что частная производная – это производная функции одной переменной, когда значение другой переменной фиксировано. Поэтому частные производные вычисляются по тем же правилам, что и вычисление производных функций одной переменной.

Пример . Найти частные производные функции
.

Имеем:
,
.

Функции многих переменных

§1. Понятие функции многих переменных.

Пусть имеется n переменных величин . Каждый набор
обозначает точку n - мерного множества
(п -мерный вектор).

Пусть даны множества
и
.

Опр . Если каждой точке
ставится в соответствие единственное число
, то говорят, что задана числовая функция n переменных:

.

называют областью определения,
- множеством значений данной функции.

В случае n =2 вместо
обычно пишут x , y , z . Тогда функция двух переменных имеет вид:

z = f (x , y ).

Например,
- функция двух переменных;

- функция трех переменных;

Линейная функция n переменных.

Опр . Графиком функции n переменных называется n - мерная гиперповерхность в пространстве
, каждая точка которой задается координатами

Например, графиком функции двух переменных z = f (x , y ) является поверхность в трехмерном пространстве, каждая точка которой задается координатами (x , y , z ) , где
, и
.

Поскольку график функции трех и более переменных изобразить не представляется возможным, в основном мы будем (для наглядности) рассматривать функции двух переменных.

Построение графиков функций двух переменных является довольно сложной задачей. Существенную помощь в ее решении может оказать построение так называемых линий уровня.

Опр . Линией уровня функции двух переменных z = f (x , y ) называется множество точек плоскости ХОУ , являющихся проекцией сечения графика функции плоскостью, параллельной ХОУ. В каждой точке линии уровня функция имеет одно и то же значение. Линии уровня описываются уравнением f (x , y )=с , где с – некоторое число. Линий уровня бесконечно много, и через каждую точку области определения можно провести одну из них.

Опр . Поверхностью уровня функции n переменных y = f (
) называется гиперповерхность в пространстве
, в каждой точке которой значение функции постоянно и равно некоторому значению с . Уравнение поверхности уровня: f (
)=с.

Пример . Построить график функции двух переменных

.

.

При с=1:
;
.

При с=4:
;
.

При с=9:
;
.

Линии уровня – концентрические окружности, радиус которых уменьшается с ростом z .

§2. Предел и непрерывность функции многих переменных.

Для функций многих переменных определяются те же понятия, что и для функции одной переменной. Например, можно дать определения предела и непрерывности функции.

Опр . Число А называется пределом функции двух переменных z = f (x , y ) при
,
и обозначается
, если для любого положительного числа найдется положительное число , такое, что если точка
удалена от точки
на расстояние меньше , то величины f (x , y ) и А отличаются меньше чем на .

Опр . Если функция z = f (x , y ) определена в точке
и имеет в этой точке предел, равный значению функции
, то она называется непрерывной в данной точке.

.

§3. Частные производные функции многих переменных.

Рассмотрим функцию двух переменных
.

Зафиксируем значение одного из ее аргументов, например , положив
. Тогда функция
есть функция одной переменной . Пусть она имеет производную в точке :

.

Данная производная называется частной производной (или частной производной первого порядка) функции
по в точке
и обозначается:
;
;
;
.

Разность называется частным приращением по и обозначается
:

Учитывая приведенные обозначения, можно записать


.

Аналогично определяется

.

Частной производной функции нескольких переменных по одной из этих переменных называется предел отношения частного приращения функции к приращению соответствующей независимой переменной, когда это приращение стремится к нулю.

При нахождении частной производной по какому-либо аргументу другие аргументы считаются постоянными. Все правила и формулы дифференцирования функций одной переменной справедливы для частных производных функции многих переменных.

Заметим, что частные производные функции являются функциями тех же переменных. Эти функции, в свою очередь, могут иметь частные производные, которые называются вторыми частными производными (или частными производными второго порядка) исходной функции.

Например, функция
имеет четыре частных производных второго порядка, которые обозначаются следующим образом:

;
;

;
.

и
- смешанные частные производные.

Пример. Найти частные производные второго порядка для функции

.

Решение.
,
.

,
.

,
.

Задание .

1. Найти частные производные второго порядка для функций

,
;

2. Для функции
доказать, что
.

Полный дифференциал функции многих переменных.

При одновременном изменении величин х и у функция
изменится на величину , называемую полным приращением функции z в точке
. Так же, как и в случае функции одной переменной, возникает задача о приближенной замене приращения
на линейную функцию от
и
. Роль линейного приближения выполняет полный дифференциал функции:

Полный дифференциал второго порядка:

=
.

=
.

В общем виде полный дифференциал п -го порядка имеет вид:

Производная по направлению. Градиент.

Пусть функция z = f (x , y ) определена в некоторой окрестности точки M(x , y ) и - некоторое направление, задаваемое единичным вектором
. Координаты единичного вектора выражаются через косинусы углов, образуемых вектором и осями координат и называемых направляющими косинусами:

,

.

При перемещении точки M(x , y ) в данном направлении l в точку
функция z получит приращение

называемое приращением функции в данном направлении l .

Если ММ 1 =∆l , то

Т

огда

О

пр
. Производной функции z = f (x , y ) по направлению называется предел отношения приращения функции в этом направлении к величине перемещения ∆l при стремлении последней к нулю:

Производная по направлению характеризует скорость изменения функции в данном направлении. Очевидно, что частные производные и представляют собой производные по направлениям, параллельным осям Ox и Oy . Нетрудно показать, что

Пример . Вычислить производную функции
в точке (1;1) по направлению
.

Опр . Градиентом функции z = f (x , y ) называется вектор с координатами, равными частным производным:

.

Рассмотрим скалярное произведение векторов
и
:

Легко видеть, что
, т.е. производная по направлению равна скалярному произведению градиента и единичного вектора направления .

Поскольку
, то скалярное произведение максимально, когда векторы одинаково направлены. Таким образом, градиент функции в точке задает направление наискорейшего возрастания функции в этой точке, а модуль градиента равен максимальной скорости роста функции.

Зная градиент функции, можно локально строить линии уровня функции.

Теорема . Пусть задана дифференцируемая функция z = f (x , y ) и в точке
градиент функции не равен нулю:
. Тогда градиент перпендикулярен линии уровня, проходящей через данную точку.

Таким образом, если, начиная с некоторой точки, строить в близких точках градиент функции и малую часть перпендикулярной ему линии уровня, то можно (с некоторой погрешностью) построить линии уровня.

Локальный экстремум функции двух переменных

Пусть функция
определена и непрерывна в некоторой окрестности точки
.

Опр . Точка
называется точкой локального максимума функции
, если существует такая окрестность точки , в которой для любой точки
выполняется неравенство:

.

Аналогично вводится понятие локального минимума.

Теорема (необходимое условие локального экстремума) .

Для того, чтобы дифференцируемая функция
имела локальный экстремум в точке
, необходимо, чтобы все ее частные производные первого порядка в этой точке были равны нулю:

Итак, точками возможного наличия экстремума являются те точки, в которых функция дифференцируема, а ее градиент равен 0:
. Как и в случае функции одной переменной, такие точки называются стационарными.

Определение. Переменная z (с областью изменения Z ) называется функцией двух независимых переменных х,у в множестве М , если каждой паре (х,у ) из множества М z из Z.

Определение. Множество М , в котором заданы переменные х,у, называется областью определения функции , множество Z –областью значений функции , а сами х,у – ее аргументами .

Обозначения: z = f(x,y), z = z(x,y).

Примеры.

Определение . Переменная z (с областью изменения Z ) называется функцией нескольких независимых переменных в множестве М , если каждому набору чисел из множества М по некоторому правилу или закону ставится в соответствие одно определенное значение z из Z. Понятия аргументов, области определения и области значения вводятся так же, как для функции двух переменных.

Обозначения: z = f , z = z .

Замечание. Так как пару чисел (х,у ) можно считать координатами некоторой точки на плоскости, то будем впоследствии использовать термин «точка» для пары аргументов функции двух переменных, а также для упорядоченного набора чисел , являющихся аргументами функции нескольких переменных.

Геометрическое изображение функции двух переменных

Рассмотрим функцию

z = f(x,y) , (15.1)

определенную в некоторой области М на плоскости Оху . Тогда множество точек трехмерного пространства с координатами (x,y,z) , где , является графиком функции двух переменных. Поскольку уравнение (15.1) определяет некоторую поверхность в трехмерном пространстве, она и будет геометрическим изображением рассматриваемой функции.

Область определения функции z = f(x,y) в простейших случаях представляет собой либо часть плоскости, ограниченную замкнутой кривой, причем точки этой кривой (границы области) могут принадлежать или не пренадлежать области определения, либо всю плоскость, либо,наконец, совокупностьнескольких частей плоскости xOy.


z = f(x,y)


Примерами могут служить уравнения плоскости z = ax + by + c

и поверхностей второго порядка: z = x ² + y ² (параболоид вращения),

(конус) и т.д.

Замечание. Для функции трех и более переменных будем пользоваться термином «поверхность в n -мерном пространстве», хотя изобразить подобную поверхность невозможно.

Линии и поверхности уровня

Для функции двух переменных, заданной уравнением (15.1), можно рассмотреть множество точек (х,у) плоскости Оху , для которых z принимает одно и то же постоянное значение, то есть z = const. Эти точки образуют на плоскости линию, называемую линией уровня .



Пример.

Найдем линии уровня для поверхности z = 4 – x ² - y ². Их уравнения имеют вид x ² + y ² = 4 – c (c =const) – уравнения концентрических окружностей с центром в начале координат и с радиусами . Например, при с =0 получаем окружность x ² + y ² = 4 .

Для функции трех переменных u = u (x, y, z) уравнение u (x, y, z) = c определяет поверхность в трехмерном пространстве, которую называют поверхностью уровня .

Пример.

Для функции u = 3x + 5y – 7z –12 поверхностями уровня будет семейство параллельных плоскостей, задаваемых уравнениями 3x + 5y – 7z –12 + с = 0.

Предел и непрерывность функции нескольких переменных

Введем понятие δ-окрестности точки М 0 (х 0 , у 0) на плоскости Оху как круга радиуса δ с центром в данной точке. Аналогично можно определить δ-окрестность в трехмерном пространстве как шар радиуса δ с центром в точке М 0 (х 0 , у 0 , z 0) . Для n -мерного пространства будем называть δ-окрестностью точки М 0 множество точек М с координатами , удовлетворяющими условию

где - координаты точки М 0 . Иногда это множество называют «шаром» в n -мерном пространстве.

Определение. Число А называется пределом функции нескольких переменных f в точке М 0 , если такое, что | f(M) – A | < ε для любой точки М из δ-окрестности М 0 .

Обозначения: .

Необходимо учитывать, что при этом точка М может приближаться к М 0 , условно говоря, по любой траектории внутри δ-окрестности точки М 0 . Поэтому следует отличать предел функции нескольких переменных в общем смысле от так называемых повторных пределов , получаемых последовательными предельными переходами по каждому аргументу в отдельности.

Примеры.

Замечание. Можно доказать, что из существования предела в данной точке в обычном смысле и существования в этой точке пределов по отдельным аргументам следует существование и равенство повторных пределов. Обратное утверждение неверно.

Определение Функция f называется непрерывной в точке М 0 , если (15.2)

Если ввести обозначения , то условие (15.2) можно переписать в форме (15.3)

Определение . Внутренняя точка М 0 области определения функции z = f (M) называется точкой разрыва функции, если в этой точке не выполняются условия (15.2), (15.3).

Замечание. Множество точек разрыва может образовывать на плоскости или в пространстве линии или поверхности разрыва .

Примеры.

Свойства пределов и непрерывных функций

Так как определения предела и непрерывности для функции нескольких переменных практически совпадает с соответствующими определениями для функции одной переменной, то для функций нескольких переменных сохраняются все свойства пределов и непрерывных функций, доказанные в первой части курса, а именно:

1) Если существуют то существуют и (если ).

2) Если а и для любого i существуют пределы и существует , где М 0 , то существует и предел сложной функции при , где - координаты точки Р 0 .

3) Если функции f(M) и g(M) непрерывны в точке М 0 , то в этой точке непрерывны и функции f(M) + g(M), kf(M), f(M) g(M), f(M)/g(M) (если g(M 0) ≠ 0).

4) Если функции непрерывны в точке Р 0 , а функция непрерывна в точке М 0 , где , то сложная функция непрерывна в точке Р 0 .

5) Функция непрерывная в замкнутой ограниченной области D , принимает в этой области свое наибольшее и наименьшее значения.

6) Если функция непрерывная в замкнутой ограниченной области D , принимает в этой области значения А и В , то она принимает в области D и любое промежуточное значение, лежащее между А и В .

7) Если функция непрерывная в замкнутой ограниченной области D , принимает в этой области значения разных знаков, то найдется по крайней мере одна точка из области D , в которой f = 0.

Частные производные

Рассмотрим изменение функции при задании приращения только одному из ее аргументов – х i , и назовем его .

Определение . Частной производной функции по аргументу х i называется .

Обозначения: .

Таким образом, частная производная функции нескольких переменных определяется фактически как производная функции одной переменной – х i . Поэтому для нее справедливы все свойства производных, доказанные для функции одной переменной.

Замечание. При практическом вычислении частных производных пользуемся обычными правилами дифференцирования функции одной переменной, полагая аргумент, по которому ведется дифференцирование, переменным, а остальные аргументы – постоянными.

Примеры .

1. z = 2x ² + 3xy –12y ² + 5x – 4y +2,

2. z = x y ,

Геометрическая интерпретация частных производных функции двух переменных

Рассмотрим уравнение поверхности z = f (x,y) и проведем плоскость х = const. Выберем на линии пересечения плоскости с поверхностью точку М (х,у) . Если задать аргументу у приращение Δу и рассмотреть точку Т на кривой с координатами (х, у+ Δу, z+ Δ y z ), то тангенс угла, образованного секущей МТ с положительным направлением оси Оу , будет равен . Переходя к пределу при , получим, что частная производная равна тангенсу угла, образованного касательной к полученной кривой в точке М с положительным направлением оси Оу. Соответственно частная производная равна тангенсу угла с осью Ох касательной к кривой, полученной в результате сечения поверхности z = f (x,y) плоскостью y = const.

Дифференцируемость функции нескольких переменных

При исследовании вопросов, связанных с дифференцируемостью, ограничимся случаем функции трех переменных, поскольку все доказательства для большего количества переменных проводятся так же.

Определение . Полным приращением функции u = f(x, y, z) называется

Теорема 1. Если частные производные существуют в точке (х 0 , у 0 , z 0 ) и в некоторой ее окрестности и непрерывны в точке (x 0 , y 0 , z 0 ) , то- ограниченные (т.к. их модули не превышают 1).

Тогда приращение функции, удовлетворяющей условиям теоремы 1, можно представить в виде: , (15.6)

Определение . Если приращение функции u = f (x, y, z) в точке (x 0 , y 0 , z 0) можно представить в виде (15.6), (15.7), то функция называется дифференцируемой в этой точке, а выражение - главной линейной частью приращения или полным дифференциалом рассматриваемой функции.

Обозначения: du, df (x 0 , y 0 , z 0).

Так же, как в случае функции одной переменной, дифференциалами независимых переменных считаются их произвольные приращения, поэтому

Замечание 1. Итак, утверждение «функция дифференцируема» не равнозначно утверждению «функция имеет частные производные» - для дифференцируемости требуется еще и непрерывность этих производных в рассматриваемой точке.

.

Рассмотрим функцию и выберем х 0 = 1, у 0 = 2. Тогда Δх = 1,02 – 1 = 0,02; Δу = 1,97 – 2 = -0,03. Найдем ,

Следовательно, учитывая, что f ( 1, 2) = 3, получим.

Загрузка...