chok-chok-shop.ru

Форматы кадров Ethernet. Форматы кадров Ethernet Форматы кадров технологии Ethernet

Технология Ethernet в своем стремительном развитии уже давно перешагнула уровень локальных сетей. Она избавилась от коллизий, получила полный дуплекс и гигабитные скорости. Широкий спектр экономически выгодных решений позволяет смело внедрять Ethernet на магистралях. По мнению экспертов, мировой рынок Ethernet операторского класса - скромной технологии офисных сетей, используемой сегодня в основных телекоммуникационных сетях, - переживает настоящий бум. Как бы широко ни распространился Ethernet, по мнению аналитиков, все еще впереди.


Технология Ethernet в своем стремительном развитии уже давно перешагнула уровень локальных сетей. Она избавилась от коллизий, получила полный дуплекс и гигабитные скорости. Широкий спектр экономически выгодных решений позволяет смело внедрять Ethernet на магистралях.

Metro Ethernet строится
по трехуровневой иерархической схеме и включает ядро, уровень агрегации и уровень доступа. Ядро сети строится на высокопроизводительных коммутаторах и обеспечивает высокоскоростную передачу трафика. Уровень агрегации также создается на коммутаторах и обеспечивает агрегацию подключений уровня доступа, реализацию сервисов и сбор статистики. В зависимости от масштаба сети ядро и уровень агрегации могут быть объединены. Каналы между коммутаторами могут строиться на основе различных высокоскоростных технологий, чаще всего Gigabit Ethernet и 10-Gigabit Ethernet. При этом необходимо учитывать требования по восстановлению сети при сбое и структуру построения ядра. В ядре и на уровне агрегации обеспечивается резервирование компонентов коммутаторов, а также топологическое резервирование, что позволяет продолжать предоставление услуг при одиночных сбоях каналов и узлов. Существенного сокращения времени на восстановление можно добиться только за счет применения технологии канального уровня. Поддержка технологии EAPS — собственного протокола компании Extreme Networks, предназначеного для поддержки топологии, исключающей зацикливание трафика и ее перестроение в случае нарушений в кольцевых сетях Ethernet. Cети, использующие EAPS, обладают всеми положительным свойствами сетей SONET/SDH и Resilient Packet Ring (RPR) включая время восстановления топологии =50ms.

Уровень доступа строится по кольцевой или звездообразной схеме на коммутаторах Metro Ethernet для подключения корпоративных клиентов, офисных зданий, а также домашних и SOHO клиентов. На уровне доступа реализуется полный комплекс мер безопасности, обеспечивающих идентификацию и изоляцию клиентов, защиту инфраструктуры оператора.

Обзор технологии Ethernet

Ethernet (эзернет, от лат. aether — эфир) — пакетная технология компьютерных сетей.

Стандарты Ethernet определяют проводные соединения и электрические сигналы на физическом уровне, формат пакетов и протоколы управления доступом к среде — на канальном уровне модели OSI. Ethernet в основном описывается стандартами IEEE группы 802.3. Ethernet стал самой распространённой технологией ЛВС в середине 90-х годов прошлого века, вытеснив такие технологии, как Arcnet, FDDI и Token ring.

В стандарте первых версий (Ethernet v1.0 и Ethernet v2.0) указано, что в качестве передающей среды используется коаксиальный кабель, в дальнейшем появилась возможность использовать кабель витая пара и кабель оптический. Метод управления доступом — множественный доступ с контролем несущей и обнаружением коллизий (CSMA/CD, Carrier Sense Multiply Access with Collision Detection), скорость передачи данных 10 Мбит/с, размер пакета от 72 до 1526 байт, описаны методы кодирования данных. Количество узлов в одном разделяемом сегменте сети ограничено предельным значением в 1024 рабочих станции (спецификации физического уровня могут устанавливать более жёсткие ограничения, например, к сегменту тонкого коаксиала может подключаться не более 30 рабочих станций, а к сегменту толстого коаксиала — не более 100). Однако сеть, построенная на одном разделяемом сегменте, становится неэффективной задолго до достижения предельного значения количества узлов.

В 1995 году принят стандарт IEEE 802.3u Fast Ethernet со скоростью 100 Мбит/с, а позже был принят стандарт IEEE 802.3z Gigabit Ethernet со скоростью 1000 Мбит/с. Появилась возможность работы в режиме полный дуплекс.

Формат кадра

Существует несколько форматов Ethernet-кадра.

Первоначальный Variant I (больше не применяется).
Ethernet Version 2 или Ethernet-кадр II, ещё называемый DIX (аббревиатура первых букв фирм-разработчиков DEC, Intel, Xerox) — наиболее распространена и используется по сей день. Часто используется непосредственно протоколом интернет.

Novell — внутренняя модификация IEEE 802.3 без LLC (Logical Link Control).
Кадр IEEE 802.2 LLC.
Кадр IEEE 802.2 LLC/SNAP.
В качестве дополнения, Ethernet-кадр кадр может содержать тег IEEE 802.1Q, для идентификации VLAN к которой он адресован и IEEE 802.1p для указания приоритетности.
Некоторые сетевые карты Ethernet, производимые компанией Hewlett-Packard использовали при работе кадр формата IEEE 802.12, соответствующий стандарту 100VG-AnyLAN.
Разные типы кадра имеют различный формат и значение MTU.

Разновидности Ethernet

В зависимости от скорости передачи данных и передающей среды существует несколько вариантов технологии. Независимо от способа передачи стек сетевого протокола и программы работают одинаково практически во всех нижеперечисленных вариантах.

В этом разделе кратко описаны все официально существующие разновидности. По некоторым причинам, в дополнение к основному стандарту многие производители рекомендуют пользоваться другими запатентованными носителями — например, для увеличения расстояния между точками сети используется оптоволоконный кабель. Большинство Ethernet-карт и других устройств имеет поддержку нескольких скоростей передачи данных, используя автоопределение скорости и дуплексности, для достижения наилучшего соединения между двумя устройствами. Если автоопределение не срабатывает, скорость подстраивается под партнёра, и включается режим полудуплексной передачи. Например, наличие в устройстве порта Ethernet 10/100 говорит о том, что через него можно работать по технологиям 10BASE-T и 100BASE-TX, а порт Ethernet 10/100/1000 — поддерживает стандарты 10BASE-T, 100BASE-TX, и 1000BASE-T.

Ранние модификации Ethernet

Xerox Ethernet — оригинальная технология, скорость 3Мбит/с, существовала в двух вариантах Version 1 и Version 2, формат кадра последней версии до сих пор имеет широкое применение.

0BROAD36 — широкого распространения не получил. Один из первых стандартов, позволяющий работать на больших расстояниях. Использовал технологию широкополосной модуляции, похожей на ту, что используется в кабельных модемах. В качестве среды передачи данных использовался коаксиальный кабель.

1BASE5 — также известный, как StarLAN , стал первой модификацией Ethernet-технологии, использующей витую пару. Работал на скорости 1 Мбит/с, но не нашёл коммерческого применения.

10 Мбит/с Ethernet

10BASE5, IEEE 802.3 (называемый также «Толстый Ethernet») — первоначальная разработка технологии со скоростью передачи данных 10 Мбит/с. Следуя раннему стандарту IEEE использует коаксиальный кабель, с волновым сопротивлением 50 Ом (RG-8), с максимальной длиной сегмента 500 метров.

10BASE2, IEEE 802.3a (называемый «Тонкий Ethernet») — используется кабель RG-58, с максимальной длиной сегмента 200 метров, компьютеры присоединялись один к другому, для подключения кабеля к сетевой карте нужен T-коннектор, а на кабеле должен быть BNC-коннектор. Требуется наличие терминаторов на каждом конце. Многие годы этот стандарт был основным для технологии Ethernet.

StarLAN 10 — Первая разработка, использующая витую пару для передачи данных на скорости 10 Мбит/с. В дальнейшем, эволюционировал в стандарт 10BASE-T.

10BASE-T, IEEE 802.3i — для передачи данных используется 4 провода кабеля витой пары (две скрученные пары) категории-3 или категории-5. Максимальная длина сегмента 100 метров.

FOIRL — (акроним от англ. Fiber-optic inter-repeater link). Базовый стандарт для технологии Ethernet, использующий для передачи данных оптический кабель. Максимальное расстояние передачи данных без повторителя 1км.

10BASE-F, IEEE 802.3j — Основной термин для обозначения семейства 10 Mбит/с ethernet-стандартов использующих оптоволоконный кабель на расстоянии до 2 километров: 10BASE-FL, 10BASE-FB и 10BASE-FP. Из перечисленного только 10BASE-FL получил широкое распространение.

10BASE-FL (Fiber Link) — Улучшенная версия стандарта FOIRL. Улучшение коснулось увеличения длины сегмента до 2 км.

10BASE-FB (Fiber Backbone) — Сейчас неиспользуемый стандарт, предназначался для объединения повторителей в магистраль.

10BASE-FP (Fiber Passive)- Топология «пассивная звезда», в которой не нужны повторители — никогда не применялся.

Быстрый Ethernet (100 Мбит/с) (Fast Ethernet)

100BASE-T — Общий термин для обозначения одного из трёх стандартов 100 Мбит/с ethernet, использующий в качестве среды передачи данных витую пару. Длина сегмента до 200-250 метров. Включает в себя 100BASE-TX, 100BASE-T4 и 100BASE-T2.

100BASE-TX, IEEE 802.3u — Развитие технологии 10BASE-T, используется топология звезда, задействован кабель витая пара категории-5, в котором фактически используются 2 пары проводников, максимальная скорость передачи данных 100 Мбит/с.

100BASE-T4 — 100 MБит/с ethernet по кабелю категории-3. Задействованы все 4 пары. Сейчас практически не используется. Передача данных идёт в полудуплексном режиме.

100BASE-T2 — Не используется. 100 Mбит/с ethernet через кабель категории-3. Используется только 2 пары. Поддерживается полнодуплексный режим передачи, когда сигналы распространяются в противоположных направления по каждой паре. Скорость передачи в одном направлении — 50 Mбит/с.

100BASE-FX — 100 Мбит/с ethernet с помощью оптоволоконного кабеля. Максимальная длина сегмента 400 метров в полудуплексном режиме (для гарантированного обнаружения коллизий) или 2 километра в полнодуплексном режиме по многомодовому оптическому волокну и до 32 километров по одномодовому.

Гигабит Ethernet

1000BASE-T, IEEE 802.3ab — Стандарт Ethernet 1 Гбит/с. Используется витая пара категории 5e или категории 6. В передаче данных участвуют все 4 пары. Скорость передачи данных — 250 Мбит/с по одной паре.

1000BASE-TX, — Стандарт Ethernet 1 Гбит/с, использующий только витую пару категории 6. Практически не используется.

1000Base-X — общий термин для обозначения технологии Гигабит Ethernet, использующей в качестве среды передачи данных оптоволоконный кабель, включает в себя 1000BASE-SX, 1000BASE-LX и 1000BASE-CX.

1000BASE-SX, IEEE 802.3z — 1 Гбит/с Ethernet технология, использует многомодовое волокно дальность прохождения сигнала без повторителя до 550 метров.

1000BASE-LX, IEEE 802.3z — 1 Гбит/с Ethernet технология, использует многомодовое волокно дальность прохождения сигнала без повторителя до 550 метров. Оптимизирована для дальних расстояний, при использовании одномодового волокна (до 10 километров).

1000BASE-CX — Технология Гигабит Ethernet для коротких расстояний (до 25 метров), используется специальный медный кабель (Экранированная витая пара (STP)) с волновым сопротивлением 150 Ом. Заменён стандартом 1000BASE-T, и сейчас не используется.

1000BASE-LH (Long Haul) — 1 Гбит/с Ethernet технология, использует одномодовый оптический кабель, дальность прохождения сигнала без повторителя до 100 километров.

10 Гигабит Ethernet

Новый стандарт 10 Гигабит Ethernet включает в себя семь стандартов физической среды для LAN, MAN и WAN. В настоящее время он описывается поправкой IEEE 802.3ae и должен войти в следующую ревизию стандарта IEEE 802.3.

10GBASE-CX4 — Технология 10 Гигабит Ethernet для коротких расстояний (до 15 метров), используется медный кабель CX4 и коннекторы InfiniBand.

10GBASE-SR — Технология 10 Гигабит Ethernet для коротких расстояний (до 26 или 82 метров, в зависимости от типа кабеля), используется многомодовое оптоволокно. Он также поддерживает расстояния до 300 метров с использованием нового многомодового оптоволокна (2000 МГц/км).

10GBASE-LX4 — использует уплотнение по длине волны для поддержки расстояний от 240 до 300 метров по многомодовому оптоволокну. Также поддерживает расстояния до 10 километров при использовании одномодового оптоволокна.

10GBASE-LR и 10GBASE-ER — эти стандарты поддерживают расстояния до 10 и 40 километров соответственно.

10GBASE-SW, 10GBASE-LW и 10GBASE-EW — Эти стандарты используют физический интерфейс, совместимый по скорости и формату данных с интерфейсом OC-192 / STM-64 SONET/SDH. Они подобны стандартам 10GBASE-SR, 10GBASE-LR и 10GBASE-ER соответственно, так как используют те же самые типы кабелей и расстояния передачи.

10GBASE-T, IEEE 802.3an-2006 — принят в июне 2006 года после 4 лет разработки. Использует экранированную витую пару. Расстояния — до 100 метров.


В сетях Ethernet на канальном уровне используются кадры 4-х различных форматов. Это связано с длительной историей развития технологии Ethernet, насчитывающей период существования до принятия стандартов IEEE 802, когда подуровень LLC не выделялся из общего протокола и, соответственно, заголовок LLC не применялся.

Различия в форматах кадров могут приводить к несовместимости в работе аппаратуры и сетевого программного обеспечения, рассчитанного на работу только с одним стандартом кадра Ethernet. Однако сегодня практически все сетевые адаптеры, драйверы сетевых адаптеров, мосты/коммутаторы и маршрутизаторы умеют работать со всеми используемыми на практике форматами кадров технологии Ethernet, причем распознавание типа кадра выполняется автоматически.

Ниже приводится описание всех четырех типов кадров Ethernet (здесь под кадром понимается весь набор полей, которые относятся к канальному уровню, то есть поля MAC и LLC уровней). Один и тот же тип кадра может иметь разные названия, поэтому ниже для каждого типа кадра приведено по нескольку наиболее употребительных названий:

    кадр 802.3/LLC (кадр 802.3/802.2 или кадр Novell 802.2);

    кадр Raw 802.3 (или кадр Novell 802.3);

    кадр Ethernet DIX (или кадр Ethernet II);

    кадр Ethernet SNAP.

Форматы всех этих четырех типов кадров Ethernet приведены на рис. 10.3.

Кадр 802.3/LLC

Заголовок кадра 802.3/LLC является результатом объединения полей заголовков кадров, определенных в стандартах IEEE 802.3 и 802.2.

Стандарт 802.3 определяет восемь полей заголовка (рис. 10.3; поле преамбулы и начальный ограничитель кадра на рисунке не показаны).

    Поле преамбулы (Preamble) состоит из семи синхронизирующих байт 10101010. При манчестерском кодировании эта комбинация представляется в физической среде периодическим волновым сигналом с частотой 5 МГц.

    Начальный ограничитель кадра (Start-of-frame-delimiter, SFD) состоит из одного байта 10101011. Появление этой комбинации бит является указанием на то, что следующий байт - это первый байт заголовка кадра.

    Адрес назначения (Destination Address, DA) может быть длиной 2 или 6 байт. На практике всегда используются адреса из 6 байт.

    Адрес источника (Source Address, SA) - это 2- или 6-байтовое поле, содержащее адрес узла - отправителя кадра. Первый бит адреса всегда имеет значение 0.

    Длина (Length, L) - 2-байтовое поле, которое определяет длину поля данных в кадре.

    Поле данных (Data) может содержать от 0 до 1500 байт. Но если длина поля меньше 46 байт, то используется следующее поле - поле заполнения, - чтобы дополнить кадр до минимально допустимого значения в 46 байт.

    Поле заполнения (Padding) состоит из такого количества байт заполнителей, которое обеспечивает минимальную длину поля данных в 46 байт. Это обеспечивает корректную работу механизма обнаружения коллизий. Если длина поля данных достаточна, то поле заполнения в кадре не появляется.

    Поле контрольной суммы (Frame Check Sequence, PCS) состоит из 4 байт, содержащих контрольную сумму. Это значение вычисляется по алгоритму CRC-32.

Кадр 802.3 является кадром МАС-подуровня, поэтому в соответствии со стандартом 802.2 в его поле данных вкладывается кадр подуровня LLC с удаленными флагами начала и конца кадра. Формат кадра LLC был описан выше. Так как кадр LLC имеет заголовок длиной 3 (в режиме LLC1) или 4 байт (в режиме LLC2), то максимальный размер поля данных уменьшается до 1497 или 1496 байт.

Рисунок 10.3. Форматы кадров Ethernet

Кадр Raw 802.3, называемый также кадром Novell 802.3, представлен на рис. 10.3. Из рисунка видно, что это кадр подуровня MAC стандарта 802.3, но без вложенного кадра подуровня LLC. Компания Novell долгое время не использовала служебные поля кадра LLC в своей операционной системе NetWare из-за отсутствия необходимости идентифицировать тип информации, вложенной в поле данных, - там всегда находился пакет протокола IPX, долгое время бывшего единственным протоколом сетевого уровня в ОС NetWare.

Кадр Ethernet DIX/Ethernet II

Кадр Ethernet DIX, называемый также кадром Ethernet II, имеет структуру (см. рис. 10.3), совпадающую со структурой кадра Raw 802.3. Однако 2-байтовое поле Длина(L) кадра Raw 802.3 в кадре Ethernet DIX используется в качестве поля типа протокола. Это поле, теперь получившее название Туре (Т) или EtherType, предназначено для тех же целей, что и поля DSAP и SSAP кадра LLC - для указания типа протокола верхнего уровня, вложившего свой пакет в поле данных этого кадра.

Кадр Ethernet SNAP

Для устранения разнобоя в кодировках типов протоколов, сообщения которых вложены в поле данных кадров Ethernet, комитетом 802.2 была проведена работа по дальнейшей стандартизации кадров Ethernet. В результате появился кадр Ethernet SNAP (SNAP - Subnetwork Access Protocol, протокол доступа к подсетям). Кадр Ethernet SNAP (см. рис. 10.3) представляет собой расширение кадра 802.3/LLC за счет введения дополнительного заголовка протокола SNAP, состоящего из двух полей: OUI и Туре. Поле Туре состоит из 2-х байт и повторяет по формату и назначению поле Туре кадра Ethernet II (то есть в нем используются те же значения кодов протоколов). Поле OUI (Organizationally Unique Identifier) определяет идентификатор организации, которая контролирует коды протоколов в поле Туре. С помощью заголовка SNAP достигнута совместимость с кодами протоколов в кадрах Ethernet II, а также создана универсальная схема кодирования протоколов. Коды протоколов для технологий 802 контролирует IEEE, которая имеет OUI, равный 000000. Если в будущем потребуются другие коды протоколов для какой-либо новой технологии, для этого достаточно указать другой идентификатор организации, назначающей эти коды, а старые значения кодов останутся в силе (в сочетании с другим идентификатором OUI).

Данные, передаваемые в сети Ethernet, разбиты на кадры. Напомним, что практически каждой сетевой технологии (независимо от её уровня) соответствует единица передачи данных: Ethernet - кадр, АТМ - ячейка, IP - дейтаграмма и т.д. Данные по сети в чистом виде не передаются. Как правило, к единице данных "пристраевается" заголовок. В некоторых сетевых технологиях добавляется также окончание. Заголовок и окончание несут служебную информацию и состоят из определённых полей.

Так как существует несколько типов кадров, то для того, чтобы понять друг друга, отправитель и получатель должны использовать один и тот же тип кадров. Кадры могут быть четырёх разных форматов, несколько отличающихся друг от друга. Базовых форматов кадров (raw formats) существует всего два - Ethernet II и Ethernet 802.3. Эти форматы отличаются назначением всего одного поля.

Для успешной доставки информации получателю каждый кадр должен кроме данных содержать служебную информацию: длину поля данных, физические адреса отправителя и получателя, тип сетевого протокола и т.д.

Для того, чтобы рабочие станции имели возможность взаимодействовать с сервером в одном сегменте сети, они должны поддерживать единый формат кадра. Существует четыре основных разновидности кадров Ethernet:

  • Ethernet Type II
  • Ethernet 802.3
  • Ethernet 802.2
  • Ethernet SNAP (SubNetwork Access Protocol).

Рассмотрим поля, общие для всех четырёх типов кадров (рис. 1).

Рис. 1. Общий формат кадров Ethernet

Поля в кадре имеют следующие значения:

  • Поля "Преамбула" и "Признак начала кадра" предназначены для синхронизации отправителя и получателя. Преамбула представляет собой 7 - байтовую последовательность единиц и нулей. Поле признака начала кадра имеет размер 1 байт. Эти поля не принимаются в расчёт при вычислении длины кадра.
  • Поле "Адрес получателя" состоит из 6 байт и содержит физический адрес устройства в сети, которому адресован данный кадр. Значения этого и следующего поля являются уникальными. Каждому производителю адаптеров Ethernet назначаются первые три байта адреса, а оставшиеся три байта определяются непосредственно самим производителем. Например, для адаптеров фирмы 3Com физические адреса будут начинаться с 0020AF. Первый бит адреса получателя имеет специальное значение. Если он равен 0, то это адрес конкретного устройства (только в этом случае первые три байта служат для идентификации производителя сетевой платы), а если 1 - широковещательный. Обычно в широковещательном адресе все оставшиеся биты тоже устанавливаются равными единице (FF FF FF FF FF FF).
  • Поле "Адрес отправителя" состоит из 6 байт и содержит физический адрес устройства в сети, которое отправило данный кадр. Первый бит адреса отправителя всегда равен нулю.
  • Поле "Длина/тип" может содержать длину или тип кадра в зависимости от используемого кадра Ethernet. Если поле задаёт длину, она указывается в двух байтах. Если тип - то содержимое поля указывает на тип протокола верхнего уровня, которому принадлежит данный кадр. Например, при использовании протокола IPX поле имеет значение 8137, а для протокола IP - 0800.
  • Поле "Данные" содержит данные кадра. Чаще всего - это информация, нужная протоколам верхнего уровня. Данное поле не имеет фиксированной длины.
  • Поле "Контрольная сумма" содержит результат вычисления котрольной суммы всех полей, за исключением перамбулы, признака начала кадра и самой контрольной суммы. Вычисление выполняется отправителем и добавляется в кадр. Аналогичная процедура вычисления выполняется и на устройстве получателя. В случае, если результат вычисления не совпадает со значением данного поля, предполагается, что произошла ошибка при передаче. В этом случае кадр считается испорченным и игнорируется.

Следует отметить, что минимальная допустимая длина всех четырёх типов кадров Ethernet составляет 64 байта, а максимальная - 1518 байт. Так как на служебную информацию в кадре отводится 18 байт, то поле "Данных" может иметь длину от 46 до 1500 байт. Если передаваемые по сети данные меньше допустимой минимальной длины, кадр будет автоматически дополняться до 46 байт. Столь жёсткие ограничения на минимальную длину кадра введены для обеспечения нормальной работы механизма обнаружения коллизий.

Выделим три главных элемента стандарта: формат кадра, систему сигнализации между рабочими станциями при осуществлении передачи данных по протоколу CSMA/CD и набор физических сред: коаксиальный кабель, витая пара, волоконно-оптический кабель.

Формат кадра Ethernet

На рис. 7-2 показан формат кадра Ethernet. Поля имеют следующие назначения:
— Преамбула: 7 байт, каждый из которых представляет чередование единиц и нулей 10101010. Преамбула позволяет установить битовую синхронизацию на приемной стороне.
— Ограничитель начала кадра (SFD, start frame delimiter): 1 байт, последовательность 10101011. указывает, что далее последуют, информационные поля кадра. Этот байт можно относить к преамбуле.
— Адрес назначения (DA, destination address): 6 байт, указывает МАС-адрес станции (МАС-адреса станций), для которой (которых) предназначен этот кадр. Это может быть единственный физический адрес (unicast), групповой адрес (multicast) или широковещательный адрес (broadcast).
— Адрес отправителя (SA, source address): б байт, указывает МАС-адрес станции, которая посылает кадр.
— Поле типа или длины кадра (Т or L, type or length): 2 байта. Существуют два базовых формата кадра Ethernet (в английской терминологии raw formats -сырые форматы) -EthernetII и IEEE 802.3 (рис. 7.2), причем различное назначение у них имеет именно рассматриваемое поле. Для кадра EthernetII в этом поле содержится информация о типе кадра. Ниже приведены значения в шестнадцатеричной системе этого поля для некоторых распространенных сетевых протоколов: 0х0800 для IP, 0х0806 для ARP, 0х809В для AppleTalk, 0х0600 для XNS, и 0х8137 для IPX/SPX. С указанием в этом поле конкретного значения (одного из перечисленных) кадр приобретает реальный формат, и в таком формате кадр уже может распространяться по сети.
— Для кадра IEEE 802,3 в этом поле содержится выраженный в байтах размер следующего поля — поля данных (LLC Data). Если эта цифра приводит к общей длине кадра меньше 64 байт, то за полем LLC Data добавляется поле Pad. Для протокола более высокого уровня не возникает путаницы с определением типа кадра, так как для кадра IEEE 802.3 значение этого поля не может быть больше 1500 (0x05DC). Поэтому, в одной сети могут свободно сосуществовать оба формата кадров, более того, один сетевой адаптер может взаимодействовать с обоими типами посредством стека протоколов.
— Данные (LLC Data): поле данных, которое обрабатывается подуровнем LLC. Сам по себе кадр IEEE 802.3 еще не окончательный. В зависимости от значений первых нескольких байт этого поля, могут быть три окончательных формата этого кадра IEEE 802.3:
— Ethernet_802.3 (не стандартный, в настоящее время устаревающий формат, используемый Novell) — первые два байта LLC Data равны 0xFFFF;
— EthernetSNAP (стандартный IEEE 802.2 SNAP формат, которому отдается наибольшее предпочтение в современных сетях, особенно для протокола TCP/IP) — первый байт LLC Data равен 0хАА;
— Ethernet_802.2 (стандартный IEEE 802.2 формат, используется фирмой Novell в NetWare 4.0) — первый байт LLC Data не равен ни 0xFF (11111111), ни 0хАА (10101010).

Дополнительное поле (pad — наполнитель) — заполняется только в том случае, когда поле данных невелико, с целью удлинения длины кадра до минимального размера 64 байта — преамбула не учитывается. Ограничение снизу на минимальную длину кадра необходимо для правильного разрешения коллизий.

Контрольная последовательность кадра (FCS, frame check sequence): 4-байтовое поле, в котором указывается контрольная сумма, вычисленная с использованием циклического избыточного кода по полям кадра, за исключением преамбул SDF и FCS.

Рис. 7.2. Два базовых MAC формата кадра Ethernet

Основные варианты алгоритмов случайного доступа к среде

Протокол CSMA/CD определяет характер взаимодействия рабочих станций в сети с единой общей для всех устройств средой передачи данных. Все станции имеют равноправные условия по передаче данных. Нет определенной последовательности, в соответствии с которой станции могут получать доступ к среде для осуществления передачи. Именно в этом смысле доступ к среде осуществляется случайным образом. Реализация алгоритмов случайного доступа представляется значительно более простой задачей, чем реализация алгоритмов детерминированного доступа. Поскольку в последнем случае требуется или специальный протокол, контролирующий работу всех устройств сети (например, протокол обращения маркера, свойственный сетям Token Ring и FDDI), или специальное выделенное устройство-мастер концентратор, который в определенной последовательности предоставлял бы всем остальным станциям возможность передавать (сети Arcnet, 100VG AnyLAN).

Однако сеть со случайным доступом имеет один, пожалуй главный, недостаток — это не совсем устойчивая работа сети при большой загруженности, когда может проходить достаточно большое время, прежде чем данной станции удается передать данные. Виной тому-коллизии, которые возникают между станциями, начавшими передачу одновременно или почти одновременно. При возникновении коллизии передаваемые данные не доходят до получателей, а передающим станциям приходится повторно возобновлять передачу.

Дадим определение: множество всех станций сети, одновременная передача любой пары из которых приводит к коллизии, называется коллизионным доменом (collision domain). Из-за коллизии (конфликта) могут возникать непредсказуемые задержки при распространении кадров по сети, особенно при большой загруженности сети (много станций пытаются одновременно передавать внутри коллизионного домена, > 20-25), и при большом диаметре коллизионного домена (> 2 км). Поэтому при построении сетей желательно избегать таких экстремальных режимов работы.

Проблема построения протокола, способного наиболее рационально разрешать коллизии, и оптимизирующего работу сети при больших загрузках, была одной из ключевых на этапе формирования стандарта Ethernet IEEE 802.3. Первоначально рассматривались три основных подхода в качестве кандидатов для реализации стандарта случайного доступа к среде (рис. 7.3): непостоянный, 1-постоянный и р-постоянный.

Рис. 7.3. Алгоритмы множественного случайного доступа (CSMA) и выдержка времени в конфликтной ситуации (collision backoff)

Непостоянный (nonpersistent) алгоритм. При этом алгоритме станция, желающая передавать, руководствуется следующими правилами.

1. Прослушивает среду, и, если среда свободна (т.е. если нет другой передачи или нет сигнала коллизии), передает, в противном случае — среда занята -переходит к шагу 2.
2. Если среда занята, ждет случайное (в соответствии с определенной кривой распределения вероятностей) время и возвращается к шагу 1.

Использование случайного значения ожидания при занятой среде уменьшает вероятность образования коллизий. Действительно, предположим в противном случае, что две станции практически одновременно собрались передавать, в то время, как третья уже осуществляет передачу. Если первые две не имели бы случайного времени ожидания перед началом передачи (в случае, если среда оказалась занятой), а только прослушивали среду и ждали, когда она освободится, то после прекращения передачи третьей станцией первые две начали бы передавать одновременно, что неизбежно приводило бы к коллизиям. Таким образом, случайное ожидание устраняет возможность образования таких коллизий. Однако неудобство этого метода проявляется в неэффективном использовании полосы пропускания канала. Поскольку может случиться, что к тому моменту, когда среда освободится, станция, желающая передавать, еще будет продолжать ожидать некоторое случайное время, прежде чем решится прослушивать среду, поскольку перед этим уже прослушивала среду, которая оказалась занятой. В итоге канал будет простаивать какое-то время, даже если только одна станция ожидает передачи.

1-постоянный (1-persistent) алгоритм. Для сокращения времени, когда среда не занята, мог бы использоваться 1-постоянный алгоритм. При этом алгоритме станция, желающая передавать, руководствуется следующими правилами.

1. Прослушивает среду, и, если среда не занята, передает, в противном случае переходит к шагу 2;
2. Если среда занята, продолжает прослушивать среду до тех пор, пока среда не освободится, и, как только среда освобождается, сразу же начинает передавать.

Сравнивая непостоянный и 1-постоянный алгоритмы, можно сказать, что в 1-постоянном алгоритме станция, желающая передавать, ведет себя более «эгоистично». Поэтому, если две или более станций ожидают передачи (ждут, пока не освободится среда), коллизия, можно сказать, будет гарантирована. После коллизии станции начинают решать, что им делать дальше.

Р-постоянный (p-persistent) алгоритм. Правила этого алгоритма следующие:
1. Если среда свободна, станция с вероятностью р сразу же начинает передачу или с вероятностью (1-р) ожидает в течение интервала времени Т. Интервал Т обычно берется равным максимальному времени распространения сигнала из конца в конец сети;
2. Если среда занята, станция продолжает прослушивание до тех пор, пока среда не освободится, затем переходит к шагу 1;
3. Если передача задержана на один интервал Т, станция возвращается к шагу 1.

И здесь возникает вопрос выбора наиболее эффективного значения параметра р. Главная проблема, как избежать нестабильности при высоких загрузках. Рассмотрим ситуацию, при которой n станций намерены передать кадры, в то время, как уже идет передача. По окончанию передачи ожидаемое количество станций, которые попытаются передавать, будет равно произведению количества желающих передавать станций на вероятность передачи, то есть пр. Если np > 1, то в среднем несколько станций будут пытаться передать сразу, что вызовет коллизию. Более того, как только коллизия будет обнаружена, все станции вновь перейдут к шагу 1, что вызовет повторную коллизию. В худшем случае, новые станции, желающие передавать, могут добавиться к n, что еще больше усугубит ситуацию, приведя, в конечном итоге, к непрерывной коллизии и нулевой пропускной способности. Во избежании такой катастрофы пр должно быть меньше единицы. Если же сеть подвержена возникновению состояний, когда много станций одновременно желают передавать, то необходимо уменьшать р. С другой стороны, когда р становиться слишком малым, даже отдельная станция может прождать в среднем (1 — р)/р интервалов Т, прежде чем осуществит передачу. Так если р=0,1, то средний простой, предшествующий передаче, составит 9Т.

В сети несколько компьютеров должны иметь совместный доступ к среде передачи. Однако, если два компьютера попытаются одновременно передавать данные, произойдет коллизия и данные будут потеряны.

Все сетевые компьютеры должны использовать один и тот же метод доступа, иначе произойдет сбой сети. Отдельные компьютеры, чьи методы будут доминировать, не дадут остальным осуществить передачу. Методы доступа служат для предотвращения одновременного доступа к кабелю нескольких компьютеров, упорядочивая передачу и прием данных по сети и гарантируя, что в каждый момент времени только один компьютер может работать на передачу.

При множественном доступе с контролем несущей и обнаружением коллизий (сокращенно CSMA/CD) все компьютеры в сети - и клиенты, и серверы - "прослушивают" кабель, стремясь обнаружить передаваемые данные (то есть трафик).

1) Компьютер "понимает", что кабель свободен (то есть трафик отсутствует).

2) Компьютер может начать передачу данных.

3) Пока кабель не освободится (в течение передачи данных), ни один из сетевых компьютеров не может вести передачу.

При попытке одновременного доступа к среде передачи более одного сетевого устройства возникает коллизия. Компьютеры регистрируют возникновение коллизии, освобождают линию передачи на некоторый случайно заданный (в пределах определенных стандартом границ) интервал времени, после чего попытка передачи повторяется. Компьютер, первым захвативший линию передачи, начинает передавать данные.

CSMA/CD известен как состязательный метод, поскольку сетевые компьютеры "состязаются" (конкурируют) между собой за право передавать данные.

Способность обнаруживать коллизии - причина, которая ограничивает область действия самого CSMA/CD. Из-за конечной скорости распространения сигнала в проводах при расстояниях свыше 2500 м (1,5 мили) механизм обнаружения коллизий не эффективен. Если расстояние до передающего компьютера превышает это ограничение, некоторые компьютеры не успевают обнаружить загрузку кабеля и начинают передачу данных, что приводит к коллизии и разрушению пакетов данных.

Примерами протоколов CDSMA/CD являются Ethernet version 2 корпорации DEC и IEEE 802.3.

Спецификация физической среды Ethernet

Для технологии Ethernet разработаны различные варианты физического уровня, отличающиеся не только типом кабеля и электрическими параметрами импульсов, как это сделано в технологии 10 Мб/с Ethernet, но и способом кодирования сигналов, и количеством используемых в кабеле проводников. Поэтому физический уровень Ethernet имеет более сложную структуру, чем классический Ethernet.

Спецификации технологии Ethernet на сегодня включают следующие среды передачи данных.

  • 10Base-2 - коаксиальный кабель диаметром 0.25 дюйма, называется тонким коаксиалом. Имеет волновое сопротивление 50 Ом. Максимальная длина сегмента - 185 метров (без повторителей).
  • 10Base-5 - коаксиальный кабель диаметром 0.5 дюйма, называется "толстым" коаксиалом. Имеет волновое сопротивление 50Ом. Максимальная длина сегмента без повторителя - 500 метров.
  • 10Base-T - кабель на основе не экранированной витой пары (UTP). Образует звездообразную топологию на основе концентраторов. Расстояние между концентратором и конечным узлом не более100 метров.
  • 10Base-F - волоконно-оптический кабель. Топология аналогична топологии стандарта 10Base-Т. Имеется несколько вариантов данной спецификации - FOIRL (расстояние до 1000 м), 10Base-FL (расстояние до 2000 м).

Форматы кадров Ethernet

Как и на производстве, кадры в сети Ethernet решают все. Они служат вместилищем для всех высокоуровневых пакетов, поэтому, чтобы понять друг друга, отправитель и получатель должны использовать один и тот же тип кадров Ethernet. Стандарт технологи Ethernet, определенный в документе IEEE802.3, дает описание единственного формата кадра уровня МАС.Кадры могут быть всего четырех разных форматов, и к тому же не сильно отличающихся друг от друга. Более того, базовых форматов кадров существует всего два (в английской терминологии их называют "raw formats") - Ethernet_II и Ethernet_802.3, причем они отличаются назначением всего одного поля.

  • Кадр Ethernet DIX(Ethernet II) . Появился в результате работы консорциума трех фирм Digital, Intel и Xerox в 1980 году, который представил на рассмотрение комитету 802.3 свою фирменную версию стандарта Ethernet в качестве проекта международного стандарта.
  • 802.3/LLC, 802.3/802.2 или Novell 802.2 . Принят комитетом 802.3 принял стандарт отличающийся в некоторых деталях от Ethernet DIX.
  • Кадр Raw 802.3 , или Novell 802.3 - появился в результате усилий компании Novell по ускорению работы своего стека протоколов в сетях Ethernet

Каждый кадр начинается с преамбулы (Preamble) Длиной 7 байт, заполненной шаблоном 0b10101010 (для синхронизации источника и получателя). После преамбулы идет байт начального ограничителя кадра (Start of Frame Delimiter, SFD), содержащий последовательность 0b10101011 и указывающий на начало собственного кадра. Далее идут поля адресов получателя (Destination Address, DA) и источника (Source Address, SA). В Ethernet используют 48-битные адреса МАС-уровня IEEE.

Следующее поле имеет разный смысл и разную длину в зависимости от типа кадра.

В конце кадра идет32-битное поле контрольной суммы (Frame Check Sequence, FCS). Контрольная сумма вычисляется по алгоритму CRC-32. Размер кадра Ethernet от 64 до 1518 байт (без учета преамбулы, но с учетом поля контрольной суммы)

Тип кадра Ethernet DIX

Кадр стандарта Ethernet DIX, называемый также кадром Ethernet II, похож на кадр Raw 802.3 тем, что он также не использует заголовки подуровня LLC, но отличается тем, что на месте поля длины в нем определено поле типа протокола (поле Type). Это поле предназначено для тех же целей, что и поля DSAP и SSAP кадра LLC - для указания типа протокола верхнего уровня, вложившего свой пакет в поле данных этого кадра. Для кодирования типа протокола используются значения, превышающие значение максимальной длины поля данных, равное 1500, поэтому кадры Ethernet II и 802.3 легко различимы.

Тип кадра Raw 802.3.

За адресом источника он содержит 16-битное поле длины (L), определяющее число байт, следующее за полем длины (без учета поля контрольной суммы). В этот тип кадра всегда вкладывается пакет протокола IPX. Первые два байта заголовка протокола IPX содержат контрольную сумму датаграммы IPX. Однако, по умолчанию это поле не используется и имеет значение 0xFFFF.

Тип кадра 802.3.LLC

За полем адреса источника идет 16-битное поле длины, определяющее число байт, следующее за этим полем (без учета поля контрольной суммы)За ним следует заголовок LLC. Заголовок кадра 802.3/LLC является результатом объединения полей заголовков кадров, определенных в стандартах 802.3 и 802.2.

Стандарт 802.3 определяет восемь полей заголовка:

Поле преамбулы состоит из семи байтов синхронизирующих данных. Каждый байт содержит одну и ту же последовательность битов - 10101010. При манчестерском кодировании эта комбинация представляется в физической среде периодическим волновым сигналом. Преамбула используется для того, чтобы дать время и возможность схемам приемопередатчиков (transceiver) прийти в устойчивый синхронизм с принимаемыми тактовыми сигналами.

Начальный ограничитель кадра состоит из одного байта с набором битов 10101011. Появление этой комбинации является указанием на предстоящий прием кадра.

Адрес получателя - может быть длиной 2 или 6 байтов (MAC-адрес получателя). Первый бит адреса получателя - это признак того, является адрес индивидуальным или групповым: если 0, то адрес указывает на определенную станцию, если 1, то это групповой адрес нескольких (возможно всех) станций сети. При широковещательной адресации все биты поля адреса устанавливаются в 1. Общепринятым является использование 6-байтовых адресов.

Адрес отправителя - 2-х или 6-ти байтовое поле, содержащее адрес станции отправителя. Первый бит - всегда имеет значение 0.

Двухбайтовое поле длины определяет длину поля данных в кадре.

Поле данных может содержать от 0 до 1500 байт. Но если длина поля меньше 46 байт, то используется следующее поле - поле заполнения, чтобы дополнить кадр до минимально допустимой длины.

Поле заполнения состоит из такого количества байтов заполнителей, которое обеспечивает определенную минимальную длину поля данных (46 байт). Это обеспечивает корректную работу механизма обнаружения коллизий. Если длина поля данных достаточна, то поле заполнения в кадре не появляется.

Поле контрольной суммы - 4 байта, содержащие значение, которое вычисляется по определенному алгоритму (полиному CRC-32). После получения кадра рабочая станция выполняет собственное вычисление контрольной суммы для этого кадра, сравнивает полученное значение со значением поля контрольной суммы и, таким образом, определяет, не искажен ли полученный кадр.

Кадр 802.3 является кадром MAС-подуровня, в соответствии со стандартом 802.2 в его поле данных вкладывается кадр подуровня LLC с удаленными флагами начала и конца кадра.

Результирующий кадр 802.3/LLC изображен вниз. Так как кадр LLC имеет заголовок длиной 3 байта, то максимальный размер поля данных уменьшается до 1497 байт.

Тип кадра Ethernet SNAP

Кадр Ethernet SNAP (SNAP - SubNetwork Access Protocol, протокол доступа к подсетям) является расширением кадра 802.3/ LLC за счет введения дополнительного заголовка протокола SNAP. Заголовок состоит из 3-байтового поля идентификатора организации (OUI) и 2-байтового поля типа (Type, Ethertype). Тип идентифицирует протокол верхнего уровня, а поле OUI определяет идентификатор организации, контролирующей назначение кодов типа протокола. Коды протоколов для стандартов IEEE 802 контролирует IEEE, имеющая код OUI равный 0х000000. Для этого кода OUI поле типа для Ethernet SNAP совпадает со значением типа Ethernet DIX.

Сводная таблица по использованию Разных типов кадров протоколами высшего уровня.

Тип кадра

Ethernet II

Ethernet Raw 802.3

Ethernet 802.3/ LLC

Ethernet SNAP

Сетевые протоколы

IPX, IP, AppleTalk Phase I

IPX, IP, AppleTalk Phase II

Fast Ethernet

Отличие технологии Fast Ethernet от Ethernet

Все отличия технологии Ethernet и Fast Ethernet сосредоточенны на физическом уровне. Целью технологии Fast Ethernet является получение значительно, на порядок большей, скорости по сравнению с 10 Base T Ethernet - IEEE 802.3, сохраняя, в тоже время, прежние метод доступа, формат фрейма и систему записи.Уровни МАС и LLC в Fast Ethernet остались абсолютно теми же.

Организация физического уровня технологии Fast Ethernet является более сложной, поскольку в ней используются три варианта кабельных систем:

  • Волоконно-оптический многомодовый кабель(два волокна)
  • Витая пара категории 5 (две пары)
  • Витая пара категории 3 (четыре пары)

Коаксиальный кабель в Fast Ethernet не используется. Сети Fast Ethernet на разделяемой среде подобно сетям 10Base-T/10Base-F имеет иерархическую древовидную структуру, построенную на концентраторах. Основным отличием конфигурации сетей Fast Ethernet является сокращение диаметра до 200 метров, что объясняется сокращением времени передачи кадра минимальной длины в 10 раз по сравнению с 10-мегобайтной сетью Ethernet.

Но при использовании коммутаторов протокол Fast Ethernet может работать в дуплексном режиме, в котором нет ограничения на общую длину сети, а только на отдельные физические сегменты.

Спецификация физической среды Ethernet

  • 100BASE-T - Общий термин для обозначения одного из трёх стандартов 100 Мбит/с Ethernet, использующий в качестве среды передачи данных витую пару. Длина сегмента до 200-250 метров. Включает в себя 100BASE-TX, 100BASE-T4 и 100BASE-T2.
  • 100BASE-TX , IEEE 802.3u - Развитие технологии 10BASE-T, используется топология звезда, задействован кабель витая пара категории-5, в котором фактически используются 2 пары проводников, максимальная скорость передачи данных 100 Мбит/с.
  • 100BASE-T4 - 100 MБит/с Ethernet по кабелю категории-3. Задействованы все 4 пары. Сейчас практически не используется. Передача данных идёт в полудуплексном режиме.
  • 100BASE-T2 - Не используется. 100 Mбит/с Ethernet через кабель категории-3. Используется только 2 пары. Поддерживается полнодуплексный режим передачи, когда сигналы распространяются в противоположных направления по каждой паре. Скорость передачи в одном направлении - 50 Mбит/с.
  • 100BASE-FX - 100 Мбит/с Ethernet с помощью оптоволоконного кабеля. Максимальная длина сегмента 400 метров в полудуплексном режиме (для гарантированного обнаружения коллизий) или 2 километра в полнодуплексном режиме по многомодовому оптическому волокну и до 32 километров по одномодовому.

Gigabit Ethernet

  • 1000BASE-T, IEEE 802.3ab - Стандарт Ethernet 1 Гбит/с. Используется витая пара категории 5e или категории 6. В передаче данных участвуют все 4 пары. Скорость передачи данных - 250 Мбит/с по одной паре.
  • 1000BASE-TX , - Стандарт Ethernet 1 Гбит/с, использующий только витую пару категории 6. Практически не используется .
  • 1000Base-X - общий термин для обозначения технологии Гигабит Ethernet, использующей в качестве среды передачи данных оптоволоконный кабель, включает в себя 1000BASE-SX, 1000BASE-LX и 1000BASE-CX.
  • 1000BASE-SX, IEEE 802.3z - 1 Гбит/с Ethernet технология, использует многомодовое волокно дальность прохождения сигнала без повторителя до 550 метров.
  • 1000BASE-LX, IEEE 802.3z - 1 Гбит/с Ethernet технология, использует многомодовое волокно дальность прохождения сигнала без повторителя до 550 метров. Оптимизирована для дальних расстояний, при использовании одномодового волокна (до 10 километров).
  • 1000BASE-CX - Технология Гигабит Ethernet для коротких расстояний (до 25 метров), используется специальный медный кабель (Экранированная витая пара (STP)) с волновым сопротивлением 150 Ом. Заменён стандартом 1000BASE-T, и сейчас не используется .
  • 1000BASE-LH (Long Haul) - 1 Гбит/с Ethernet технология, использует одномодовый оптический кабель, дальность прохождения сигнала без повторителя до 100 километров.

Проблемы Gigabit Ethernet

  • Обеспечение приемлемого диаметра сети для работы на разделяемой среде . В связи с ограничениями, накладываемыми методом CSMA/CD на длину кабеля, версия Gigabit Ethernet для разделяемой среды допускала бы длину сегмента всего в 25 метров. Необходимо было решить эту проблему.
  • Достижение битовой скорости 1000Мбит/с на оптическом кабеле . Технология Fibre Channel, физический уровень которой был взят за основу для оптоволоконной версии Gigabit Ethernet, обеспечивает скорость передачи данных всего 800Мбит/с.
  • Использование в качестве кабеля витой пары .

Для решения этих задач пришлось внести изменения не только в физический уровень, но и в уровень МАС.

Средства обеспечения диаметра сети в 200 м на разделяемой среде

Для расширения максимального диаметра сети Gigabit Ethernet в полудуплексном режиме до 200 м разработчики технологии предприняли достаточно естественные меры, основывающиеся на известном соотношения времени передачи кадра минимальной длины и временем двойного оборота.

Минимальный размер кадра был увеличен (без учета преамбулы) с 64 до 512 байт или до 4096 bt. Соответственно, время двойного оборота теперь также можно было увеличить до 4095 bt, что делает допустимым диаметр сети около 200 м при использовании одного повторителя. При двойной задержке сигнала в 10 bt/m оптоволоконные кабели длиной 100 м вносят вклад во время двойного оборота по 1000 bt, и если повторитель и сетевые адаптеры будут вносить такие же задержки, как в технологии Fast Ethernet (данные для которых приводились в предыдущем разделе), то задержка повторителя в 1000 bt и пары сетевых адаптеров в 1000 bt дадут в сумме время двойного оборота 4000 bt, что удовлетворяет условию распознавания коллизий. Для увеличения длины кадра до требуемой в новой технологии величины сетевой адаптер должен дополнить поле данных до длины 448 байт так называемый расширением (extention), представляющим собой поле, заполненное запрещенными символами кода 8В/10В, которые невозможно принять за коды данных.

Для сокращения накладных расходов при использовании слишком длинных кадров для передачи коротких квитанций разработчики стандарта разрешили конечным узлам передавать несколько кадров подряд, без передачи среды другим станциям. Такой режим получил название Burst Mode - монопольный пакетный режим. Станция может передать подряд несколько кадров с общей длиной не более 65 536 бит или 8192 байт. Если станции нужно передать несколько небольших кадров, то она может не дополнять их до размера в 512 байт, а передавать подряд до исчерпания предела в 8192 байт (в этот предел входят все байты кадра, в том числе преамбула, заголовок, данные и контрольная сумма). Предел 8192 байт называется BurstLength. Если станция начала передавать кадр и предел BurstLength был достигнут в середине кадра, то кадр разрешается передать до конца.

Увеличение "совмещенного" кадра до 8192 байт несколько задерживает доступ к разделяемой среде других станций, но при скорости 1000 Мбит/с эта задержка не столь существенна

Литература

  1. В.Г.Олифер, Н.А.Олифер Компьютерные сети
Загрузка...