chok-chok-shop.ru

Спектрофотометр предназначен. Эковью спектрофотометр: описание, сферы применения

Цвет является ощущением, что возникает в человеческом мозге из-за цветового стимула (лучистая энергия, которая проникает в человеческий орган зрения). Но бывают ситуации, когда цвет необходимо измерить.

Электронный оптический аппарат, которым измеряют цвет называется спектрофотометр. С его помощью измеряют величину излучения в нужной области видимого спектра.Данный прибор более точен по сравнению с колориметром. Образец для измерения может иметь вид жидкости, твердого тела, пасты, гранул, пленки либо порошка.

Он пропускает либо отражает падающий на него свет от источника освещения.

Измерение спектрофотометром происходит следующим образом: встроенная лампа (источник освещения) излучает измерительный свет, он отражается от образца, призмы (либо дифракционные решетки) разделяют его на части, каждая часть имеет свою полосу пропускания (обычно это 10 нанометров). Свет от каждой из этих частей попадает на фоточувствительный элемент. Матрица этих элементов выдаст все данные об энергетическом распределении по отраженному, поглощенному либо пропущенному образцом излучаемому спектру. Как итог получается коэффициент отражения либо пропускания, он выражается в процентах.

Спектрофотометры обладают целым набором технических параметров, которые влияют на выбор модели прибора. Даже конструкцию спектрофотометра определяет область его применения.

Выбирая спектрофотометр, нужно узнать, какой источник излучения указан в документации.

Данный параметр обозначается заглавной буквой латинского алфавита:

  • свет от электрической лампочки со световой температурой, равной 2856 Кельвинам (A);
  • свет солнца, но не прямой, со световой температурой, равной 6774 Кельвинам (C);
  • естественное (дневное освещение) со световой температурой, равной 5000 Кельвинам (D);
  • естественное (дневное освещение) со световой температурой, равной 6500 Кельвинам (D65).

Диаметр площади для измерения цвета также имеет большое значение. Если предстоит проводить измерение цвета гранул, порошка, искусственных камней либо поверхностей с неоднородным окрашиванием, то нужен прибор с большой апертурой, чтобы была хорошая сходимость итогов измерения. Однако иногда возникает необходимость и в небольшом диаметре площади для измерения цвета.

Важными параметрами спектрофотометра являются повторяемость и воспроизводимость итогов измерения.

  • Воспроизводимость определяется близостью итогов измерения одного объекта одинаковыми методами и правилами одного документа с использованием разного оборудования и различными лаборантами в различные отрезки времени и в разных лабораториях.
  • Повторяемость определяется близостью итогов измерения одного объекта одинаковыми методами и правилами одного документа с применением одного оборудования в одной лаборатории одним лаборантом.

Приборы спектрофотометры подразделяются на несколько категорий:

  1. Если нужны точный анализ цвета, испытания и аттестация сырьевых материалов, то применяют стационарные приборы (для исследований, измерения степени пропускания прозрачных предметов и белизны предмета с ультрафиолетовыми компонентами). Они обладают хорошей прочностью конструкции, большой измерительной головкой и большим измерительным отверстием. В них расширены возможности измерения цвета (можно измерять и на отражение, и на пропускание).
  2. Спектрофотометры портативной конфигурации дают возможность измерить цвет в режиме реального времени и на любом этапе производственного процесса. Такие приборы легкие и очень удобные, их можно транспортировать. У них есть не только измерительная головка, но и мощная система микропроцессоров для анализирования информации, полученной во время измерения. Все результаты измерений выводятся жидкокристаллический экран прибора, а в памяти, которая встроена в прибор, можно сохранить большое число данных и допустимые критерии. Эти спектрофотометры функционируют и отдельно от компьютера. Их оснащают угловой, сферической либо многоугловой геометрией измерений.

Таблица. Операции и средства поверки спектрофотометров инфракрасных согласно ГОСТ 8.657-2009.

Наименование операции Номер пункта стандарта Наименование и тип основного или вспомогательного средства поверки; обозначение нормативного документа, устанавливающего технические требования и (или) метрологические и основные технические характеристики средства поверки
Внешний осмотр 7.1 -
Опробование 7.2 Пленка полистирола толщиной 0,025...0,070 мм по ГОСТ 20282
Определение разрешающей способности 7.3 Газовая кювета, заполненная аммиаком под давлением 4·10 3 Па, с длиной поглощающего слоя 100 мм из набора поверочных средств для инфракрасных спектрофотометров НПС-ИКС; пары воды в атмосфере
Определение погрешности градуировки шкалы волновых чисел 7.4 Эталонные средства измерений 2-го разряда по рекомендации (стандартные образцы): пленка полистирола толщиной 0,025…0,070 мм или кюветы, заполненные инденом, с поглощающим слоем толщиной 0,1 и 0,025 мм, или кювета, наполненная аммиаком под давлением 4·10 3 Па, с длиной поглощающего слоя 100 мм, или диоксид углерода и пары воды в атмосфере (характеристики спектров приведены в приложениях А и Б). Лупа с десятикратным увеличением по ГОСТ 25706
Определение уровня мешающего излучения 7.5 Фотометрический секторный диск с коэффициентом пропускания 10% из эталонного средства измерений ПКС-731. Фильтры из набора поверочных средств для инфракрасных спектрофотометров НПС-ИКС по приложению В
Определение абсолютной основной погрешности спектрофотометра 7.6 Фотометрические секторные диски с коэффициентами пропускания 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% и 90% из эталонного средства измерений ПКС-731. Предел допускаемой погрешности измерений коэффициентов пропускания - не более 0,3%

При выборе спектрофотометра, помимо других технических параметров, необходимо обратить внимание и на геометрию измерения (первое значение - это освещение образца, второе значение - отраженный световой поток). Геометрия измерения определяет, как образец освещен и как наблюдается. Существует несколько геометрий освещения, чтобы измерять спектр отраженного сигнала, которые установлены на заседании комиссии по вопросам освещения, членами которой являются специалистами из разных стран.

Есть несколько измерительных геометрий:

  • 45/0 - образец освещен пучками света (единичным пучком), их оси с нормалью к образцовой поверхности создают угол в 45 градусов. Направление наблюдения и нормаль к образцовой поверхности создают угол в 10 градусов. А угол, образованный осью освещения пучка и одним из его лучиков, равен 5 градусам. Эти параметры соблюдаются и в пучке наблюдения.
  • 0/45 - образец освещен пучком света, его ось с нормалью к образцовой поверхности создают угол в 10 градусов. Образец наблюдают под углом в 45 градусов к его нормали. А угол, образованный осью пучка освещения и одним из его лучиков, равен 5 градусам. Эти параметры соблюдаются и в пучке наблюдения.
  • D/0 - образец освещен диффузно интегрирующей сферой (любой диаметр). Нормаль к образцовой поверхности и ось пучка наблюдения создают угол, равный 10 градусам. Угол, образованный осью наблюдаемого пучка и одним из его лучиков, равен 5 градусам.
  • 0/D - образец освещен пучком света, его ось с нормалью к образцовой поверхности создают угол 10 градусов. Световой поток отражается и собирается интегрирующей сферой. Угол, образованный осью освещаемого пучка и одним из его лучиков, равен 5 градусам.

Сейчас применяют модели спектрофотометров, имеющие измерительную геометрию, обозначаемую 45/0 и D/0.

Приборы, чья измерительная геометрия обозначена 45/0, являются дешевыми и портативными. Их применяют, контролируя цвет и измеряя шкалу теста (создание ICC профилей). Сначала они обладали одним световым источником, а потом появились спектрофотометры с симметричными световыми источниками (их два).

Специалисты заметили, что в цветах образцов, освещаемых с различных сторон, есть весьма заметные отличия.

Чтобы эти различия усреднить, начали применять спектрофотометры со световыми источниками в виде колец (геометрия измерения 45/0:c). Однако их нельзя использовать для металлизированных и глянцевых образцов (свет отражается зеркально, измерения обладают большой погрешностью).

Приборы, чья геометрия измерения D/0, лишены таких ограничений, а образец имеет диффузное освещение. В них зеркальную составляющую исключают, размещая приемник света под углом, равным 8 градусам, к нормали, и размещая ловушку блеска (она включает либо выключает зеркальный компонент) напротив.

Когда свет не падает на образцовую поверхность под углом 8 градусов из-за ловушки блеска, то он не отразится зеркально, а будет лишь диффузный свет отраженного потока. Получается измерительная геометрия, которую принято обозначать D/8. Зеркальную ловушку в закрытом виде (включение зеркального компонента) обозначают как D/8:i. Зеркальную ловушку в открытом виде (исключение зеркального компонента) обозначают как D/8:e.

Существуют предметы, окрашенные в особые цвета (вкрапления из металла либо жемчужные пигменты), чтобы они выделялись на общем фоне похожих предметов. И дать визуальную оценку таким предмета при помощи спектрофотометров с угловой либо со сферической геометрией становится затруднительно. Поэтому используют приборы с многоугловой геометрией (объект подсвечивается под углом 45 градусов, а измерение выполняется под незеркальным углом 15 градусов, 25 градусов, 45 градусов, 75 градусов и 110 градусов).

Спектрофотометры различают по точности измерения и по техническим возможностям. Типы спектрофотометров определяются задачами цветового управления. К примеру, когда нужно измерить образцы с флуоресцентными колорантами либо с оптическим отбеливателем, тогда нужно применить прибор, геометрия измерения которого сферическая, источник освещения импульсный и есть устройство калибровки ультрафиолетовой составляющей в спектре излучения спектрофотометра.

Чтобы измерять образцы на пропускание (жидкость либо пленочка), нужно применять прибор, геометрия измерения которого сферическая и есть возможность измерять пропускание света (общее либо направленное).

Когда спектрофотометр нужен только для контролирования цвета (не нужен расчет рецепта цветов), то возможно применять прибор с угловой геометрией (45/0 либо 0/45). Но, когда важно контролировать цвет и рассчитывать цветовой рецепт, то обязательно нужен прибор, геометрия цвета которого сферическая (D/8).

Специалисты маркетинга применяют спектрофотометры, чтобы оценивать качество цвета товара и упаковки, а также для описания в количественном эквиваленте впечатлений людей, которые появляются благодаря органам зрения. Спектрофотометры используют, чтобы измерять численные различия в цвете эталона и образца товара, и чтобы создавать рецепты красок.

Используют спектрофотометры при изготовлении пищевых продуктов, чтобы определять цвет готового изделия, которую будут употреблять в пищу.

Данные приборы необходимы и на предприятиях, выпускающих пластмассы, ткани, лакокрасочные материалы, косметическую продукцию.

Таким образом, можно сделать вывод о том, что: спектрофотометры могут различаться конфигурацией и измерительной геометрией. От области применения зависит выбор типа прибора.

материалы по теме

Лоренсвилль, штат Нью-Джерси - Международный лидер в сфере решений уравнивания цветом и технологий коммуникации цвета Datacolor® на днях оповестил о выпуске портативного спектрофотометра Datacolor 20D, специально спроектированного для ритейлерских торговых центров лакокрасочных товаров и хозяйственных магазинов. В комбинации с новым программным продуктом Datacolor PAINT v. 2.x, Datacolor 20D предоставляет лучшую в отрасли точность цветового равенства в применении красок и покрытий. Этот очень точный спектрофотометр дает лучшее цветовое совпадение с первого измерения на рынке, повышая производительность, экономию средств и удовлетворенность клиентов.

Применение

Спектрофотометры могут работать в различных диапазонах длин волн - от ультрафиолетового до инфракрасного . В зависимости от этого приборы имеют разное назначение.

Назначение

Основное назначение спектрофотометров в полиграфической отрасли - проведение точной линеаризации и калибровки процессов печати. Спектрофотометры компаний GretagMacbeth, X-Rite, Techkon, Konica-Minolta и других производителей предоставляют возможность проведения точечных и автоматизированных измерений для создания высококачественных ICC-профилей .

Конструкция

На рисунках приведены две основные схемы спектрофотометров, измеряющих спектральный апертурный коэффициент отражения данного объекта относительно рабочего стандарта с известной спектральной характеристикой:

Измеряемый образец освещается монохроматическим светом.

Конструктивные схемы

Есть две схемы построения спектрофотометров: спектрофотометр в виде клиновидной пластинки и с применением гетеродинной схемы приема светового излучения.

В виде клиновидной пластинки

Спектрофотометр в виде клиновидной пластинки

Спектрофотометр (рис.1) выполнен в виде клиновидной пластинки, на одну из поверхностей которой нанесен тонкий, частично пропускающий слой, а на другую поверхность нанесено отражающее покрытие, частично пропускающее световое излучение.

Принцип работы спектрофотометра основан на регистрации интерференционных полос стоячей световой волны путём проецирования изображения системы интерференционных полос на фоточувствительные линейки. При этом метод обработки сигнала отличается от традиционной Фурье-спектроскопии лишь тем, что преобразованию подвергаются сигналы не временной, а пространственной частоты. Спектрофотометр обладает высокой помехоустойчивостью к некогерентному световому излучению.

Гетеродинная схема

Гетеродинная схема приема светового излучения.

Для этого спектрофотометр снабжают вторым лазером с частотой излучения, отличающегося от первого на частоту светового биения (рис.2). При этом от излучения второго лазера образуются интерференционные полосы практически с тем же периодом d, а на тонком слое, как на смесителе, возникают световые биения. Полученные электрические сигналы регистрируют и подвергают двухмерному преобразованию Фурье.

Светофильтры

В полиграфии могут использоваться следующие светофильтры:

  • POL - поляризационный фильтр. Используется для получения предположительного спектра после закрепления краски.
  • D65 - применяется для имитации источника излучения D65.
  • UV-cut применяется при измерении оптических плотностей бумаг, в которых используются флюоресцентные оптические отбеливатели.
  • No - обозначение отсутствия светофильтра. Обычно используется прозрачное стекло, защищающее спекрофотометр от пыли.

Источники излучения

Основными источниками излучения являются:

  • А (свет лампы накаливания, 2856 К);
  • С (непрямой солнечный свет, 6774 К);
  • D (дневной свет, 5000 К);
  • D65 (дневной свет, 6500 К);
  • F11 (флуоресцентное излучение узкого диапазона отвечающее трубке Philips TL84);
  • и т. п.

Оптическая схема

Геометрия измерения

  • 45/0 (образец освещается одним или несколькими световыми пучками, оси которых образуют угол 45±5° относительно нормали к поверхности образца).
  • 0/45 10° ).
  • D/0 (образец освещается диффузно с помощью интегрирующей сферы. Интегрирующая сфера может иметь любой диаметр при условии, что суммарная площадь отверстий не превышает 10 % внутренней отражающей поверхности сферы).
  • 0/D (образец освещается световым пучком, ось которого составляет с нормалью к образцу угол не более 10° . Отраженный поток собирается с помощью интегрирующей сферы).

Модификация основных геометрий измерений

Для исключения зеркальной составляющей высокоглянцевых материалов приемник света размещается под углом 8° к нормали, а напротив него симметрично относительно нормали устанавливается ловушка блеска. Свет, который не попадает на образец под углом 8° (благодаря ловушке блеска), не отражается зеркально в направлении приемника, следовательно, отраженнный образцом поток состоит только из диффузного света. В таком случае геометрия измерения становится D/8 . Если зеркальный компонент включен, то обозначение такого - D/8:i (ловушка закрыта). Если выключен, то геометрия измерения обозначается D/8:е (ловушка открыта).

Спецификация

Спектральная разрешающая способность - минимальный шаг длины волны, сигналы на краях которого ещё можно различить на спектре. Обычно шаг, на который изменяется величина длины волны равен 10 нм, что позволяет с высокой степенью точности производить измерения спектра любых излучений. Более точные спектрофотометры, применяемые для исследовательских целей, могут производить измерения спектра и в более узких интервалах равных 5 нм и 1 нм, однако точность будет являться излишней при использовании в полиграфии.

Спектральный диапазон это диапазон в пределах которого может работать спектрофотометр. Для большинства случаев в полиграфии оценивается спектр светового излучения в видимом диапазоне длин волн от 380 до 730 нм. Для некоторых случаев бывает необходимым оценить ультрафиолетовую и инфракрасную составляющую излучения. Спектрофотометры измеряют только спектр излучения. Все остальные характеристики рассматриваются по спектральным данным.

Межприборная согласованность - это разброс измеряемых значений одного и того же образца, измеряемого с помощью эталонного и исследуемого прибора.

Повторяемость определяет точность измерений, которые осуществляются теми же операторами при нескольких измерениях одинаковыми приборами одних и тех же образцов.


Wikimedia Foundation . 2010 .

Синонимы :

Спектрофотометр СФ-46 предназначен для выполнения спектрофотометрических измерений в области 190 – 1100 нм. С его помощью можно измерить спектральные зависимости коэффициентов пропускания, оптической плотности твердых и жидких образцов, скорость изменения оптической плотности, определить концентрацию раствора в случае линейной зависимости оптической плотности от концентрации.

Блок-схема спектрофотометра представлена на рис. 1.

Рис. 1 Блок-схема спектрофотометра СФ-46

1 – осветитель; 2 – монохроматор; 3 – кюветное

отделение; 4 блок приемно-усилительный;

5 – микропроцессорная система

1 Оптическая схема

Излучение от источника 1 (рис. 2) или 1’ падает на зеркальный конденсор 2, который направляет его на плоское поворотное зеркало 3 и дает изображение источника излучения в плоскости линзы 4, расположенной вблизи входной щели 5 монохроматора.

Монохроматор построен по вертикальной автоколлимационной схеме.

Прошедшее через входную щель излучение падает на вогнутую дифракционную решетку 6 с переменным шагом и криволинейным штрихом. Дифракционная решетка, помимо диспергирующих свойств, обладает свойством фокусировать спектр. Применение переменного шага и криволинейного штриха значительно уменьшает аберрационные искажения вогнутой дифракционной решетки и позволяет получить высокое качество спектра во всем рабочем диапазоне.

Дифрагированный пучок фокусируется в плоскости выходной щели 7 монохроматора, расположенной над входной щелью 5. Сканирование осуществляется поворотом дифракционной решетки, при этом монохроматическое излучение различных длин волн проходит через выходную щель 7, линзу 8, контрольный или измеряемый образец, линзу 9 и с помощью поворотного зеркала 10 падает на светочувствительный слой фотоэлемента 11 или 12.

Для уменьшения рассеянного света и срезания высших порядков дифракции в спектрофотометре используются два светофильтра: из стекла ПС11 для работы в области спектра 230 – 450 нм и из стекла ОС14 для работы в области спектра 600 – 1100 нм. Смена светофильтров производится автоматически.

Линзы изготовлены из кварцевого стекла с высоким коэффициентом пропускания в ультрафиолетовой области спектра

Рис. 2 Оптическая схема спектрофотометра СФ-46

Для обеспечения работы спектрофотометра в широком спектральном диапазоне используются два фотоэлемента и два источника излучения сплошного спектра. Сурьмяно-цезиевый фотоэлемент с окном из кварцевого стекла применяется для измерений в области спектра от 190 до 700 нм, кислородно-цезиевый фотоэлемент – для измерений в области спектра от 600 до 1100 нм. Длина волны, при которой следует переходить от измерений с одним фотоэлементом к измерениям с другим фотоэлементом, указана в паспорте спектрофотометра.

Дейтериевая лампа предназначена для работы в области спектра от 190 до 350 нм, лампа накаливания – для работы в области спектра от 340 до 1100 нм. Для проверки градуировки используется ртутно-гелиевая лампа ДРГС-12.

Отношений потоков. Обычно используется для измерения спектров пропускания или спектров отражения излучения. Спектрофотометр является основным прибором, используемым в спектрофотометрии .

Энциклопедичный YouTube

    1 / 1

    Введение в спектрофотометрию

Субтитры

В этом видеоуроке я хочу немного поговорить о спектрофотометрии. Запишу этот термин. «Спектрофотометрия» звучит довольно сложно, но на самом деле она основана на весьма простом принципе. Пусть у нас есть, скажем, два раствора, которые содержат некоторое растворенное вещество. Назовем первый раствором один, а другой -- раствором два. Предположим также, что наши мензурки имеют одинаковую ширину. Теперь пусть, скажем, раствор 1... Подпишу число 1 и число 2. Теперь скажем, что в растворе 1 меньше растворенного вещества. Это... это уровень воды. Итак, здесь меньше вещества. Пусть раствор будет желтым, или мы воспринимаем его желтым. Итак, здесь меньше вещества. Скажем, что в растворе номер 2 больше растворенного вещества. Итак, здесь больше. Я заштрихую его более плотно расположенными линиями. Концентрация растворенного вещества здесь выше. Подпишу: более высокая концентрация. Хорошо. А здесь более... более низкая концентрация. Теперь давайте подумаем о том, что произойдет, если мы направим свет через каждую из этих мензурок. Давайте просто предположим, что мы освещаем их светом с длиной волны, которая особенно чувствительна к веществу, которое мы там растворили. Я буду говорить пока в общем. Представим, что у меня есть некоторый свет определенной интенсивности. Давайте просто назовем ее падающей интенсивностью. Обозначим ее I0. Это определенная интенсивность. Что случится, когда свет выйдет с другой стороны этой мензурки? Некоторая его часть будет поглощена. Некоторая часть этого света на определенных частотах будет поглощена нашими маленькими молекулами внутри мензурки. И в результате будет меньше света на выходе с другой стороны. Особенно меньше на тех частотах, на которых эти молекулы в растворе будут поглощать свет. Таким образом, у вас будет меньше света, выходящего с другой стороны. Света... света будет меньше. Я обозначу его I1. Теперь в этой ситуации, если мы осветим раствор тем же количеством света, то есть I0. Это должна быть стрелка, не получилась. И то же количество света, то же значение I0. Если мы направим то же самое количество света в эту мензурку, такое же количество, ту же самую интенсивность света, то что произойдет? Эти специфические частоты света будут сильнее поглощаться, когда свет пройдет через эту мензурку. Просто он будет сталкиваться с большим числом молекул из-за того, что здесь более высокая концентрация. Свет, который выходит из раствора с более высокой концентрацией... Я обозначу его интенсивность I2. Здесь будет более низкая интенсивность прошедшего света, чем здесь. В этом случае I2 будет иметь низкую интенсивность и она будет меньше чем I1. Надеюсь, что это понятно. Эти световые фотоны, как можно себе представить, будут врезаться в большее число молекул. Они будут поглощаться большим числом молекул. Поэтому проходить их будет меньше по сравнению с теми вот здесь, из-за того что здесь концентрация меньше. Это также справедливо в том случае, если бы мензурка была толще. Смотрите. Нарисую другую мензурку. Другую мензурку, которая, например, в два раза шире... В два раза шире... и пусть в ней будет раствор с такой же концентрацией, как и в мензурке под номером 2. Мы присвоим ей номер 3. В ней та же концентрация, что и в номере 2. Я попытаюсь сделать ее максимально похожей на эту. И вы направили некоторое количество света сюда. В общем, вы хотите сосредоточиться на частотах, которые поглощаются наиболее сильно. Представьте, что вы светите тем же самым светом сюда. У вас тот же свет, который проходил насквозь, который выходит. Вот что фактически вы увидите. Итак, это I3 вот здесь, и что, вы думаете, будет происходить? Раствор с той же концентрацией, но этот свет прошел больший путь при такой же концентрации. И снова он будет сталкиваться с большим числом молекул и будет сильнее поглощаться. Таким образом, меньше света будет проходить. Итак, I2 меньше чем I1, а I3 вообще будет наименьшей. Если бы вы смотрели на проходящий свет, то здесь было бы меньше всего света, здесь было бы немного больше света, а здесь было бы больше всего света. Если вы бы посмотрели на него, если бы вы поместили ваш глаз вот сюда (это... это ресницы), вот сюда, то здесь вы бы увидели самый яркий свет. Здесь больше всего света попадает в ваш глаз. Здесь будет несколько более темный цвет, а здесь будет самый темный цвет. Это совершенно логично. Если вы что-нибудь растворите, если вы растворите небольшую порцию чего-то в воде, так чтобы она оставалась достаточно прозрачной. Если вы растворите большое количество некоторого вещества в воде, то она будет менее прозрачной. Если сосуд, в котором вы растворяете, или мензурка, которую вы взяли, существенно длиннее, то вода будет еще менее прозрачной. Надеюсь, это дает вам понимание спектрофотометрии. Итак, следующий вопрос: какая от этого польза? Почему это вообще меня волнует? Вообще-то вы могли бы на практике воспользоваться этой информацией. Вы могли бы посмотреть, как много света прошло по отношению к тому, как много вы направили, для того чтобы определить концентрацию раствора. Вот почему мы говорим об этом на уроке химии. Прежде, чем мы сделаем это (я покажу вам пример в следующем видеоуроке), позвольте мне дать определения некоторых терминов, касающихся методов измерения концентрации или способов измерения того, как много света прошло в зависимости от того, насколько много его было направлено. Первое понятие, которое я определю -- это коэффициент пропускания. Давайте запишем. Итак, люди, дававшие определение, сказали: «Знаете, нас интересует, сколько света прошло по сравнению с тем, сколько упало». Давайте определим коэффициент пропускания как отношение интенсивности, которая проходит... (В этом примере коэффициент пропускания раствора номер 1 будет интенсивностью, которая прошла, деленной на интенсивность, которая упала. Вот здесь коэффициент пропускания -- это интенсивность, которая вышла, деленное на интенсивность, которая упала. Как мы видим, это вот здесь будет меньшим числом. I2 меньше чем I1. Здесь будет меньший коэффициент пропускания, чем в растворе номер 1. Давайте назовем это коэффициент пропускания 2. Это коэффициент пропускания 3. Это свет, который выходит, который проходит, по отношению к свету, который падает. Это наименьшее число, за ним идет вот это, и за ним вот это. Итак, здесь у нас будет наименьший коэффициент пропускания. Здесь наименьшая прозрачность, за ней идет вот эта, за ней вот эта. Теперь еще один термин, который в какой-то степени является производным, но не в математическом смысле, он просто вытекает из пропускания, и мы увидим, что у него есть интересные свойства. Это оптическая плотность. Записываем. Здесь мы попытаемся определить, насколько хорошо вещество поглощает свет. Это является мерой того, насколько хорошо свет проходит. Большие числа говорят, что пропускание высокое. Но оптическая плотность показывает, насколько хорошо вещество поглощает. Так что это нечто противоположное. Если пропускание вещества хорошее, это означает, что оно поглощает плохо, т. е. оно не способно сильно поглощать. Если вещество поглощает хорошо, это означает, что оно пропускает плохо. Итак, оптическая плотность вот здесь. Она определяется как отрицательный логарифм коэффициента пропускания. Понятно? Этот логарифм берется по основанию 10. Или вы можете считать, что коэффициент пропускания, который вы уже определили как отрицательный логарифм от отношения света, который прошел... который прошёл, к свету... к свету, падающему на мензурку. Но наиболее простой способ -- это взять отрицательный логарифм от коэффициента пропускания. Если коэффициент пропускания является большим числом, то оптическая плотность малым числом, что логично. Если пропускается много света, то значение оптической плотности будет очень мало, это означает, что не поглощается практически ничего. Если коэффициент пропускания выражается малым числом, то это означает, что поглощается много. Так что это будет действительно большим числом. Это то, что дает нам отрицательный логарифм. Есть еще одна интересная вещь, относящаяся к этой теме. Это закон Бера-Ламберта, который вы могли бы проверить. Бера-Ламберта. Вообще-то мы будем использовать его в следующем видеоуроке, закон Бера-Ламберта. Вообще-то я не знаю историю открытия этого закона. Я уверен, что к нему имеет отношение некто по фамилии Бер (букв. пиво), я всегда представлял, что его первооткрыватель пропускал свет через пиво. Закон Бера-Ламберта говорит нам, что оптическая плотность пропорциональна... Я должен написать его так... Оптическая плотность пропорциональна... пропорциональна (это показывает, какое расстояние свет должен пройти в растворе)... Она пропорциональна длине пути, умноженной на концентрацию. Обычно мы используем молярность для выражения концентрации. Другими словами, можно сказать, что оптическая плотность равна некоторой константе, обычно обозначаемой малой буквой эпсилон вот так. И она зависит от раствора или исследуемого растворенного вещества, которое мы здесь имеем, температуры, давления и других подобных факторов. Она равна некоторой константе, умноженной на длину пути прохождения света в растворе и на концентрацию раствора. Позвольте мне пояснить сказанное. Эта величина вот здесь является концентрацией. Подпишу: концентрация. Причина, почему это очень полезно, состоит в том, что если у вас есть некоторый образец с известной концентрацией... Если есть какой-то образец с концентрацией, которая вам известна... Позвольте... позвольте мне нарисовать вот здесь вот. Это наша ось концентрации. Давайте подпишу. Мы измеряем ее в единицах... концентрация... Мы измеряем ее в единицах... в единицах молярности. Представим, что молярность начинается с нуля. Она принимает значения, ну, скажем, 0, 0,1; 0,2; 0,3 и так далее. Вот здесь вы измеряете оптическую плотность, по вертикальной оси. Вы измеряете оптическую плотность. Вот так. Теперь представим, что у вас есть некоторый раствор, и вы знаете концентрацию, вы знаете, что его молярная концентрация равна 0,1. Позвольте мне обозначить молярность буквой М. Вы измеряете его оптическую плотность и просто получаете здесь некоторое число. Итак, вы измеряете его оптическую плотность, и получаете его оптическую плотность. Это низкая концентрация, раствор слабо поглощает. Вы получаете, скажем, некоторое число здесь. Например, 0,25. И затем, допустим, вы берете другую известную концентрацию, ну, скажем, с молярностью 0,2. И вы говорите: «О, смотрите, здесь оптическая плотность равна 0,5». Позвольте мне отметить это другим цветом. Раствор имеет оптическую плотность вот здесь, равную 0,5. Я должен поставить 0 впереди: 0,5 и 0,25. Это говорит вам, что это линейная зависимость. Так что для любой концентрации оптическая плотность будет находиться на прямой. Если вы хотите небольшой экскурс в алгебру, то эпсилон в действительности будет характеризовать наклон этой прямой Эпсилон, умноженное на длину, будет наклоном. Я не хочу вас сильно запутать. Но важно уяснить, что у вас тут будет прямая. Вот она. Вот она... Причина ее полезности состоит в том, что вы можете использовать очень малую часть алгебры для нахождения уравнения прямой. Или вы можете просто посмотреть на нее в виде графика и сказать: «Окей, у меня были две известные концентрации, и была возможность определить оптическую плотность, потому что мне известна линейная зависимость, выражаемая законом Бера-Ламберта». Если бы вы просто продолжили проводить измерения, то все значения расположились бы вдоль этой прямой. Вы можете затем решать обратную задачу. Т. е. провести измерения для некоторой неизвестной концентрации. Вы могли бы определить ее оптическую плотность. Давайте представим, что имеется некоторая неизвестная концентрация, и вы определили, что ее оптическая плотность вот здесь. Скажем, 0,4, то есть раствор имеет оптическую плотность 0,4. Тогда вы можете просто перейти на эту прямую вот здесь, и вы скажете: «Отлично, тогда это должно быть концентрацией исследуемого вещества в численном выражении». Тогда вы могли бы измерить ее, или вы можете определить ее алгебраически. Так что это весьма близко к молярности 0,2 или чуть меньше чем молярность 0,2. Мы разберем практический пример в следующем видеоуроке. Subtitles by the Amara.org community

Применение

Спектрофотометры могут работать в различных диапазонах длин волн - от ультрафиолетового до инфракрасного . В зависимости от этого приборы имеют разное назначение.

Назначение

Основное назначение спектрофотометров в полиграфической отрасли - проведение точной линеаризации и калибровки процессов печати. Спектрофотометры предоставляют возможность проведения точечных и автоматизированных измерений для создания высококачественных ICC-профилей .

Конструкция

На рисунках приведены две основные схемы спектрофотометров, измеряющих спектральный апертурный коэффициент отражения данного объекта относительно рабочего стандарта с известной спектральной характеристикой:

Спектральная разрешающая способность - безразмерная величина, равная отношению длины волны излучения к спектральному разрешению на этой длине волны .

Спектральный диапазон это диапазон в пределах которого может работать спектрофотометр. Для большинства случаев в полиграфии оценивается спектр светового излучения в видимом диапазоне длин волн от 380 до 730 нм. Для некоторых случаев бывает необходимым оценить ультрафиолетовую и инфракрасную составляющую излучения. Спектрофотометры измеряют только спектр излучения. Все остальные характеристики рассматриваются по спектральным данным.

Межприборная согласованность - это разброс измеряемых значений одного и того же образца, измеряемого с помощью эталонного и исследуемого прибора.

Повторяемость определяет точность измерений, которые осуществляются теми же операторами при нескольких измерениях одинаковыми приборами одних и тех же образцов.

В режиме калибровки оператор с пульта вводит нормированные значения, приписанные данному калибровочному раствору, последовательно подает в кюветное отделение калибровочные растворы и проводит измерения.

В режиме анализа оператор устанавливает в кюветное отделение кювету с исследуемым раствором и проводит измерение.

Рис. 3.31. Обобщенная структурная схема одноканального колориметра. 1 - источник световой энергии; 2 - диафрагма; 3 - оптическая система; 4 - полосовой фильтр; 5 - оптическая система; 6 - кювета; 7 - фотоприемник; 8 - аналого-цифровой преобразователь; 9 - микро-ЭВМ; 10 - индикатор; 11 - пульт оператора;

12 - интерфейс связи с внешней ЭВМ и регистрирующим устройством

Рис. 3.32. Упрощенная оптическая схема однолучевого спектрофотометра. 1 - монохроматор (источник монохроматического излучения световой энергии на длине волны \\, 2 - кювета с исследуемым раствором; 3 - детектор (фотоприемник); Ф„ - падающий поток световой энергии; Ф - поток световой энергии, прошедший через раствор, поглощающий часть энергии

Рис. 3.33. Обобщенная структурная схема одноканального спектрофотометра.

1 - источник световой энергии (видимая область);

2 - поворотный отражатель; 3 - источник световой энергии (ультрафиолетовая область); 4 - оптическая система, направляющая поток энергии на входную щель; 5 - входная щель; 6 - оптическая система, формирующая параллельный поток световой анергии;

7 - диспергирующий элемент (призма или дифракционная решетка); 8 - оптическая система, направляющая поток энергии на выходную щель; 9 - выходная щель; 10 - оптическая система, формирующая поток энергии, проходящий через кювету; 11 - кювета; 12 - фотоприемник; 13 - аналого-цифровой преобразователь; 14 - микро-ЭВМ; 15 - индикатор;

16 - пульт оператора; 17 - интерфейс связи с внешней ЭВМ и регистрирующим устройством

Если у прибора отсутствует режим автоматической калибровки, то оператор строит граду-ировочный график зависимости оптической плотности и нормированных значений, приписанных калибровочным растворам.

Спектрофотометры

Основное отличие спектрофотометра от фотоколориметра состоит в возможности пропустить через исследуемый образец световой поток любой требуемой длины волны, проводить фотометрические измерения, сканируя (просматривая) весь диапазон длин волн не только видимого (V1S) света - от 380 до 750 нм, но и ближнего ультрафиолета (UV) - от 200 до 380 нм.

Последнее обстоятельство не исключает целесообразности выпуска недорогих спектрофотометров, не "имеющих источника ультрафиолетового излучения и работающих только в видимой части оптического диапазона волн.

Целью упомянутого и очень важного режима работы спектрофотометров - режима сканирования - является построение спектральной кривой поглощения (абсорбции) и нахождение на ней пиков, а также исследование процессов интерференции и поиск ложных пиков, приводящих к ошибочным результатам при спектро-фотометрических исследованиях.

Основные компоненты однолучевого спектрофотометра показаны на рис. 3.32.

Принцип работы спектрофотометра. Полихроматический свет от источника проходит через монохроматор, который разлагает белый свет на цветовые компоненты. Монохроматическое излучение с дискретным интервалом в несколько нанометров проходит через ту часть прибора, где располагается образец с исследуемой пробой.

Источник света. Спектрофотометр UV/VIS (ультрафиолет + видимый свет) имеет два источника света: для видимого участка спектра и источник ультрафиолета - от 100 до 390 нм.

Источником видимого света служит вольфрамовая, как правило, галогенная лампа, дающая постоянный поток света в диапазоне 380- 950 нм, являясь стабильным и долговечным источником световой энергии со средним сроком службы более 500 ч.

В качестве источника УФ используются водородные или дейтериевые лампы. Ультрафиолетовые лампы, содержащие дейтерий, имеют высокую интенсивность излучаемого потока и непрерывный спектр в диапазоне от 200 до 360 нм.

Устройство и принцип работы спектрофотометра

На рис. 3.33 представлена обобщенная структурная схема спектрофотометра.

Рассмотрим взаимодействие и функциональное назначение элементов структурной схемы.

Загрузка...